Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach space theory: the basis of linear and nonlinear analysis. Springer, New York (2011)
Fabian, M., Montesinos, V., Zizler, V.: Smoothness in Banach spaces. Selected problems. Rev. R. Acad. Cien. Ser. A. Mat. RACSAM. 100(1–2), 101–125 (2006)
Ferrari, S., Orihuela, J., Raja, M.: Generalized metric properties of spheres and renorming of Banach spaces. Rev. R. Acad. Cienc. Exactas Fis. Natl. Ser. A Math. RACSAM. 113, 2655–2663 (2019)
[+]
Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach space theory: the basis of linear and nonlinear analysis. Springer, New York (2011)
Fabian, M., Montesinos, V., Zizler, V.: Smoothness in Banach spaces. Selected problems. Rev. R. Acad. Cien. Ser. A. Mat. RACSAM. 100(1–2), 101–125 (2006)
Ferrari, S., Orihuela, J., Raja, M.: Generalized metric properties of spheres and renorming of Banach spaces. Rev. R. Acad. Cienc. Exactas Fis. Natl. Ser. A Math. RACSAM. 113, 2655–2663 (2019)
Foguel, S.R.: On a theorem by A. E. Taylor. Proc. Amer. Math. Soc. 9, 325 (1958)
Godefroy, G.: Points de Namioka, espaces normants, applications à la théorie isométrique de la dualité. Israel J. Math. 38, 209–220 (1981)
Guirao, A.J., Montesinos, V., Zizler, V.: Open Problems in the geometry and analysis of Banach spaces. Springer International Pub, Switzerland (2016)
Harmand, P., Werner, D., Werner, W.: M-ideals in Banach spaces and Banach algebras. Lecture notes in math, vol. 1547. Springer, Berlin (1993)
Haydon, R.: Locally uniformly rotund norms in Banach spaces and their duals. J. Funct. Anal. 254, 2023–2039 (2008)
Oja, E., Viil, T., Werner, D.: Totally smooth renormings. Archiv. der. Mathematik. 112(3), 269–281 (2019)
Phelps, R.R.: Uniqueness of Hahn–Banach extensions and unique best approximation. Trans. Amer. Math. Soc. 95, 238–255 (1960)
Raja, M.: On dual locally uniformly rotund norms. Israel J. Math. 129, 77–91 (2002)
Smith, R.J., Troyanski, S.L.: Renormings of $$C(K)$$ spaces. Rev. R. Acad. Cienc. Exactas Fís. Natl. Ser. A Math. RACSAM 104(2), 375–412 (2010)
Sullivan, F.: Geometrical properties determined by the higher duals of a Banach space. Illinois J. Math. 21, 315–331 (1977)
Taylor, A.E.: The extension of linear functionals. Duke Math. J. 5, 538–547 (1939)
[-]