Mostrar el registro sencillo del ítem
dc.contributor.author | Cobollo, Ch. | es_ES |
dc.contributor.author | Guirao Sánchez, Antonio José | es_ES |
dc.contributor.author | Montesinos Santalucia, Vicente | es_ES |
dc.date.accessioned | 2021-11-05T13:12:40Z | |
dc.date.available | 2021-11-05T13:12:40Z | |
dc.date.issued | 2020-03-16 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176220 | |
dc.description.abstract | [EN] E. Oja, T. Viil, andD. Werner showed, in Totally smooth renormings, Archiv der Mathematik, 112, 3, (2019), 269-281, that a weakly compactly generated Banach space ( X, center dot) with the property that every linear functional on X has a unique Hahn-Banach extension to the bidual X ** (the so-called Phelps' property U in X **, also known as the Hahn-Banach smoothness property) can be renormed to have the stronger property that for every subspace Y of X, every linear functional on Y has a unique Hahn-Banach extension to X ** (the so-called total smoothness property of the space). We mention here that this result holds in full generality -without any restriction on the space- and in a stronger form, thanks to a result ofM. Raja, On dual locally uniformly rotund norms, Israel Journal of Mathematics 129 (2002), 77-91. | es_ES |
dc.description.sponsorship | Supported by AEI/FEDER (project MTM2017-83262-C2-2-P of Ministerio de Economia y Competitividad), by Fundacion Seneca, Region de Murcia (Grant 19368/PI/14), and Universitat Politecnica de Valencia (A. J. Guirao). Supported by AEI/FEDER (project MTM2017-83262-C2-1-P of Ministerio de Economia y Competitividad) and Universitat Politecnica de Valencia (V. Montesinos). We thank the referees for their work, that neatly improved the original version of this note to its final form. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Renormings | es_ES |
dc.subject | Total smoothness | es_ES |
dc.subject | Hahn-Banach smoothness | es_ES |
dc.subject | Local strict convexity | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A remark on totally smooth renormings | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-020-00831-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//19368%2FPI%2F14//Interacción y Aplicaciones en Análisis Funcional y armónico/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-2-P/ES/LA INTERACCION ENTRE GEOMETRIA Y TOPOLOGIA EN ESPACIOS DE BANACH. APLICACIONES./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cobollo, C.; Guirao Sánchez, AJ.; Montesinos Santalucia, V. (2020). A remark on totally smooth renormings. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(2):1-4. https://doi.org/10.1007/s13398-020-00831-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-020-00831-5 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 4 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 114 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\407512 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia | es_ES |
dc.description.references | Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach space theory: the basis of linear and nonlinear analysis. Springer, New York (2011) | es_ES |
dc.description.references | Fabian, M., Montesinos, V., Zizler, V.: Smoothness in Banach spaces. Selected problems. Rev. R. Acad. Cien. Ser. A. Mat. RACSAM. 100(1–2), 101–125 (2006) | es_ES |
dc.description.references | Ferrari, S., Orihuela, J., Raja, M.: Generalized metric properties of spheres and renorming of Banach spaces. Rev. R. Acad. Cienc. Exactas Fis. Natl. Ser. A Math. RACSAM. 113, 2655–2663 (2019) | es_ES |
dc.description.references | Foguel, S.R.: On a theorem by A. E. Taylor. Proc. Amer. Math. Soc. 9, 325 (1958) | es_ES |
dc.description.references | Godefroy, G.: Points de Namioka, espaces normants, applications à la théorie isométrique de la dualité. Israel J. Math. 38, 209–220 (1981) | es_ES |
dc.description.references | Guirao, A.J., Montesinos, V., Zizler, V.: Open Problems in the geometry and analysis of Banach spaces. Springer International Pub, Switzerland (2016) | es_ES |
dc.description.references | Harmand, P., Werner, D., Werner, W.: M-ideals in Banach spaces and Banach algebras. Lecture notes in math, vol. 1547. Springer, Berlin (1993) | es_ES |
dc.description.references | Haydon, R.: Locally uniformly rotund norms in Banach spaces and their duals. J. Funct. Anal. 254, 2023–2039 (2008) | es_ES |
dc.description.references | Oja, E., Viil, T., Werner, D.: Totally smooth renormings. Archiv. der. Mathematik. 112(3), 269–281 (2019) | es_ES |
dc.description.references | Phelps, R.R.: Uniqueness of Hahn–Banach extensions and unique best approximation. Trans. Amer. Math. Soc. 95, 238–255 (1960) | es_ES |
dc.description.references | Raja, M.: On dual locally uniformly rotund norms. Israel J. Math. 129, 77–91 (2002) | es_ES |
dc.description.references | Smith, R.J., Troyanski, S.L.: Renormings of $$C(K)$$ spaces. Rev. R. Acad. Cienc. Exactas Fís. Natl. Ser. A Math. RACSAM 104(2), 375–412 (2010) | es_ES |
dc.description.references | Sullivan, F.: Geometrical properties determined by the higher duals of a Banach space. Illinois J. Math. 21, 315–331 (1977) | es_ES |
dc.description.references | Taylor, A.E.: The extension of linear functionals. Duke Math. J. 5, 538–547 (1939) | es_ES |