Resumen:
|
[EN] Background Migraine is a heterogeneous condition with multiple clinical manifestations. Machine learning algorithms permit the identification of population groups, providing analytical advantages over other modeling ...[+]
[EN] Background Migraine is a heterogeneous condition with multiple clinical manifestations. Machine learning algorithms permit the identification of population groups, providing analytical advantages over other modeling techniques. Objective The aim of this study was to analyze critical features that permit the differentiation of subgroups of patients with migraine according to the intensity and frequency of attacks by using machine learning algorithms. Methods Sixty-seven women with migraine participated. Clinical features of migraine, related disability (Migraine Disability Assessment Scale), anxiety/depressive levels (Hospital Anxiety and Depression Scale), anxiety state/trait levels (State-Trait Anxiety Inventory), and pressure pain thresholds (PPTs) over the temporalis, neck, second metacarpal, and tibialis anterior were collected. Physical examination included the flexion-rotation test, cervical range of cervical motion, forward head position while sitting and standing, passive accessory intervertebral movements (PAIVMs) with headache reproduction, and joint positioning sense error. Subgrouping was based on machine learning algorithms by using the nearest neighbors algorithm, multisource variability assessment, and random forest model. Results For migraine intensity, group 2 (women with a regular migraine headache intensity score of 7 on an 11-point Numeric Pain Rating Scale [where 0 = no pain and 10 = maximum pain]) were younger and had lower joint positioning sense error in cervical rotation, greater cervical mobility in rotation and flexion, lower flexion-rotation test scores, positive PAIVMs reproducing migraine, normal PPTs over the tibialis anterior, shorter migraine history, and lower cranio-vertebral angles while standing than the remaining migraine intensity subgroups. The most discriminative variable was the flexion-rotation test score of the symptomatic side. For migraine frequency, no model was able to identify differences between groups (ie, patients with episodic or chronic migraine). Conclusions A subgroup of women with migraine who had common migraine intensity was identified with machine learning algorithms.
[-]
|
Descripción:
|
This is the peer reviewed version of the following article: Pérez-Benito, F.J., Conejero, J.A., Sáez, C., García-Gómez, J.M., Navarro-Pardo, E., Florencio, L.L. and Fernández-de-las-Peñas, C. (2020), Subgrouping Factors Influencing Migraine Intensity in Women: A Semi-automatic Methodology Based on Machine Learning and Information Geometry. Pain Pract, 20: 297-309, which has been published in final form at https://doi.org/10.1111/papr.12854. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
|