- -

Subgrouping factors influencing migraine intensity in women: A semi-automatic methodology based on machine learning and information geometry

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Subgrouping factors influencing migraine intensity in women: A semi-automatic methodology based on machine learning and information geometry

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Perez-Benito, Francisco Javier es_ES
dc.contributor.author Conejero, J. Alberto es_ES
dc.contributor.author Sáez Silvestre, Carlos es_ES
dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.contributor.author Navarro-Pardo, Esperanza es_ES
dc.contributor.author Florencio, Lidiane L. es_ES
dc.contributor.author Fernández-de-las-Peñas, César es_ES
dc.date.accessioned 2021-11-05T14:06:58Z
dc.date.available 2021-11-05T14:06:58Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 1530-7085 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176265
dc.description This is the peer reviewed version of the following article: Pérez-Benito, F.J., Conejero, J.A., Sáez, C., García-Gómez, J.M., Navarro-Pardo, E., Florencio, L.L. and Fernández-de-las-Peñas, C. (2020), Subgrouping Factors Influencing Migraine Intensity in Women: A Semi-automatic Methodology Based on Machine Learning and Information Geometry. Pain Pract, 20: 297-309, which has been published in final form at https://doi.org/10.1111/papr.12854. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Background Migraine is a heterogeneous condition with multiple clinical manifestations. Machine learning algorithms permit the identification of population groups, providing analytical advantages over other modeling techniques. Objective The aim of this study was to analyze critical features that permit the differentiation of subgroups of patients with migraine according to the intensity and frequency of attacks by using machine learning algorithms. Methods Sixty-seven women with migraine participated. Clinical features of migraine, related disability (Migraine Disability Assessment Scale), anxiety/depressive levels (Hospital Anxiety and Depression Scale), anxiety state/trait levels (State-Trait Anxiety Inventory), and pressure pain thresholds (PPTs) over the temporalis, neck, second metacarpal, and tibialis anterior were collected. Physical examination included the flexion-rotation test, cervical range of cervical motion, forward head position while sitting and standing, passive accessory intervertebral movements (PAIVMs) with headache reproduction, and joint positioning sense error. Subgrouping was based on machine learning algorithms by using the nearest neighbors algorithm, multisource variability assessment, and random forest model. Results For migraine intensity, group 2 (women with a regular migraine headache intensity score of 7 on an 11-point Numeric Pain Rating Scale [where 0 = no pain and 10 = maximum pain]) were younger and had lower joint positioning sense error in cervical rotation, greater cervical mobility in rotation and flexion, lower flexion-rotation test scores, positive PAIVMs reproducing migraine, normal PPTs over the tibialis anterior, shorter migraine history, and lower cranio-vertebral angles while standing than the remaining migraine intensity subgroups. The most discriminative variable was the flexion-rotation test score of the symptomatic side. For migraine frequency, no model was able to identify differences between groups (ie, patients with episodic or chronic migraine). Conclusions A subgroup of women with migraine who had common migraine intensity was identified with machine learning algorithms. es_ES
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell Publishing es_ES
dc.relation.ispartof Pain Practice es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Migraine es_ES
dc.subject Random forest es_ES
dc.subject Machine learning es_ES
dc.subject Multisource variability es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Subgrouping factors influencing migraine intensity in women: A semi-automatic methodology based on machine learning and information geometry es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/papr.12854 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Perez-Benito, FJ.; Conejero, JA.; Sáez Silvestre, C.; Garcia-Gomez, JM.; Navarro-Pardo, E.; Florencio, LL.; Fernández-De-Las-Peñas, C. (2020). Subgrouping factors influencing migraine intensity in women: A semi-automatic methodology based on machine learning and information geometry. Pain Practice. 20(3):297-309. https://doi.org/10.1111/papr.12854 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/papr.12854 es_ES
dc.description.upvformatpinicio 297 es_ES
dc.description.upvformatpfin 309 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 31677218 es_ES
dc.relation.pasarela S\417387 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem