Chatterjee S, Banerjee, Arindam S, Ganguly AR (2011) Sparse Group Lasso for regression on land climate variables. In: IEEE 11th international conference on data mining workshops. IEEE, pp 1–8
Chiang AP, Beck JS, Yen H-J, Tayeh MK, Scheetz TE, Swiderski RE, Nishimura DY, Braun TA, Kim K-YA, Huang J, Elbedour K, Carmi R, Slusarski DC, Casavant TL, Stone EM, Sheffield VC (2006) Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc Natl Acad Sci 103(16):6287–6292
Chun H, Keleş S (2010) Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J R Stat Soc Ser B Stat Methodol 72(1):3–25
[+]
Chatterjee S, Banerjee, Arindam S, Ganguly AR (2011) Sparse Group Lasso for regression on land climate variables. In: IEEE 11th international conference on data mining workshops. IEEE, pp 1–8
Chiang AP, Beck JS, Yen H-J, Tayeh MK, Scheetz TE, Swiderski RE, Nishimura DY, Braun TA, Kim K-YA, Huang J, Elbedour K, Carmi R, Slusarski DC, Casavant TL, Stone EM, Sheffield VC (2006) Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc Natl Acad Sci 103(16):6287–6292
Chun H, Keleş S (2010) Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J R Stat Soc Ser B Stat Methodol 72(1):3–25
Ciuperca G (2017) Adaptive fused LASSO in grouped quantile regression. J Stat Theory Pract 11(1):107–125
Ciuperca G (2019) Adaptive group LASSO selection in quantile models. Stat Pap 60(1):173–197
Diamond S, Boyd S (2016) CVXPY: a Python-embedded modeling language for convex optimization. arXiv:1603.00943
Domahidi A, Chu E, Boyd S (2013) ECOS: an SOCP solver for embedded systems. In: European control conference (ECC)
Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360
Fan J, Peng H (2004) Nonconcave penalized likelihood with a diverging number of parameters. Ann Stat 32(3):928–961
Friedman J, Hastie T, Tibshirani R (2010) A note on the group lasso and a sparse group lasso, pp 1–8. ArXiv:1001.0736
Ghosh S (2011) On the grouped selection and model complexity of the adaptive elastic net. Stat Comput 21:451–462
Huang J, Horowitz JL, Ma S (2008a) Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann Stat 36(2):587–613
Huang J, Ma S, Zhang C-H (2008b) Adaptive Lasso for sparse high-dimensional regression. Stat Sin 1(374):1–28
Huber PJ, Ronchetti EM (2009) Robust statistics. Wiley series in probability and statistics, 2nd edn. Wiley, Hoboken
Kim Y, Choi H, Oh HS (2008) Smoothly clipped absolute deviation on high dimensions. J Am Stat Assoc 103(484):1665–1673
Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge
Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46(1):33–50
Laria JC, Aguilera-Morillo MC, Lillo RE (2019) An iterative sparse-group Lasso. J Comput Graph Stat 28:722–731
Li Y, Zhu J (2008) L$$_1$$-Norm quantile regression. J Comput Graph Stat 17(1):1–23
Loh PL (2017) Statistical consistency and asymptotic normality for high-dimensional robust m-estimators. Ann Stat 45(2):866–896
Nardi Y, Rinaldo A (2008) On the asymptotic properties of the group lasso estimator for linear models. Electron J Stat 2:605–633
Poignard B (2018) Asymptotic theory of the adaptive Sparse Group Lasso. Ann Inst Stat Math 72:297–328
Scheetz TE, Kim K-YA, Swiderski RE, Philp AR, Braun TA, Knudtson KL, Dorrance AM, DiBona GF, Huang J, Casavant TL, Sheffield VC, Stone EM (2006) Regulation of gene expression in the mammalian eye and its relevance to eye disease. Proc Natl Acad Sci 103(39):14429–14434
Simon N, Friedman J, Hastie T, Tibshirani R (2013) A sparse-group lasso. J Comput Graph Stat 22(2):231–245
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102(43):15545–15550
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288
Wang L, Wu Y, Li R (2012) Quantile regression for analyzing heterogeneity in ultra-high dimension. J Am Stat Assoc 107(497):214–222
Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044
Wu Y, Liu Y (2009) Variable selection in quantile regression. Stat Sin 19(2):801–817
Yahya Algamal Z, Hisyam Lee M (2019) A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification. Adv Data Anal Classif 13:753–771
Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B (Methodol) 68(1):49–67
Zhao W, Zhang R, Liu J (2014) Sparse group variable selection based on quantile hierarchical Lasso. J Appl Stat 41(8):1658–1677
Zhou N, Zhu J (2010) Group variable selection via a hierarchical lasso and its oracle property. Stat Interface 3:557–574
Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(476):1418–1429
Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286
[-]