- -

Adaptive sparse group LASSO in quantile regression

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adaptive sparse group LASSO in quantile regression

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mendez-Civieta, Alvaro es_ES
dc.contributor.author Aguilera-Morillo, M. Carmen es_ES
dc.contributor.author Lillo, Rosa E. es_ES
dc.date.accessioned 2021-11-05T14:08:36Z
dc.date.available 2021-11-05T14:08:36Z
dc.date.issued 2021-09 es_ES
dc.identifier.issn 1862-5347 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176337
dc.description.abstract [EN] This paper studies the introduction of sparse group LASSO (SGL) to the quantile regression framework. Additionally, a more flexible version, an adaptive SGL is proposed based on the adaptive idea, this is, the usage of adaptive weights in the penalization. Adaptive estimators are usually focused on the study of the oracle property under asymptotic and double asymptotic frameworks. A key step on the demonstration of this property is to consider adaptive weights based on a initial root n-consistent estimator. In practice this implies the usage of a non penalized estimator that limits the adaptive solutions to low dimensional scenarios. In this work, several solutions, based on dimension reduction techniques PCA and PLS, are studied for the calculation of these weights in high dimensional frameworks. The benefits of this proposal are studied both in synthetic and real datasets. es_ES
dc.description.sponsorship We appreciate the work of the referees that has contributed to substantially improve the scientific contributions of this work. In this research we have made use of Uranus, a supercomputer cluster located at University Carlos III of Madrid and funded jointly by EU-FEDER funds and by the Spanish Government via the National Projects No. UNC313-4E-2361, No. ENE2009-12213- C03-03, No. ENE2012-33219 and No. ENE2015-68265-P. This research was partially supported by research grants and Project ECO2015-66593-P from Ministerio de Economia, Industria y Competitividad, Project MTM2017-88708-P from Ministerio de Economia y Competitividad, FEDER funds and Project IJCI-2017-34038 from Agencia Estatal de Investigacion, Ministerio de Ciencia, Innovacion y Universidades. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Advances in Data Analysis and Classification es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject High-dimension es_ES
dc.subject Penalization es_ES
dc.subject Regularization es_ES
dc.subject Prediction es_ES
dc.subject Weight calculation es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Adaptive sparse group LASSO in quantile regression es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11634-020-00413-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-88708-P/ES/CONTRIBUCIONES METODOLOGICAS Y APLICADAS EN MODELIZACION ESTOCASTICA Y FUNCIONAL DE DATOS ESTADISTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//UNC313-4E-2361/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ENE2009-12213-C03-03/ES/Mecanismos Fisicos Implicados En El Transporte Y En Las Transiciones De Confinamiento En Plasmas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//ENE2009-12213-C03-03/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ECO2015-66593-P/ES/"BIG DATA" Y DATOS COMPLEJOS EN EMPRESA Y FINANZAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//ENE2012-33219/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//UNC313-4E-2361/ES/PLATAFORMA DE CÁLCULO DE ALTAS PRESTACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Agencia Estatal de Investigación//IJCI-2017-34038//Juan de la Cierva - Incorporación/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Mendez-Civieta, A.; Aguilera-Morillo, MC.; Lillo, RE. (2021). Adaptive sparse group LASSO in quantile regression. Advances in Data Analysis and Classification. 15:547-573. https://doi.org/10.1007/s11634-020-00413-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11634-020-00413-8 es_ES
dc.description.upvformatpinicio 547 es_ES
dc.description.upvformatpfin 573 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.relation.pasarela S\429254 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Chatterjee S, Banerjee, Arindam S, Ganguly AR (2011) Sparse Group Lasso for regression on land climate variables. In: IEEE 11th international conference on data mining workshops. IEEE, pp 1–8 es_ES
dc.description.references Chiang AP, Beck JS, Yen H-J, Tayeh MK, Scheetz TE, Swiderski RE, Nishimura DY, Braun TA, Kim K-YA, Huang J, Elbedour K, Carmi R, Slusarski DC, Casavant TL, Stone EM, Sheffield VC (2006) Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc Natl Acad Sci 103(16):6287–6292 es_ES
dc.description.references Chun H, Keleş S (2010) Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J R Stat Soc Ser B Stat Methodol 72(1):3–25 es_ES
dc.description.references Ciuperca G (2017) Adaptive fused LASSO in grouped quantile regression. J Stat Theory Pract 11(1):107–125 es_ES
dc.description.references Ciuperca G (2019) Adaptive group LASSO selection in quantile models. Stat Pap 60(1):173–197 es_ES
dc.description.references Diamond S, Boyd S (2016) CVXPY: a Python-embedded modeling language for convex optimization. arXiv:1603.00943 es_ES
dc.description.references Domahidi A, Chu E, Boyd S (2013) ECOS: an SOCP solver for embedded systems. In: European control conference (ECC) es_ES
dc.description.references Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360 es_ES
dc.description.references Fan J, Peng H (2004) Nonconcave penalized likelihood with a diverging number of parameters. Ann Stat 32(3):928–961 es_ES
dc.description.references Friedman J, Hastie T, Tibshirani R (2010) A note on the group lasso and a sparse group lasso, pp 1–8. ArXiv:1001.0736 es_ES
dc.description.references Ghosh S (2011) On the grouped selection and model complexity of the adaptive elastic net. Stat Comput 21:451–462 es_ES
dc.description.references Huang J, Horowitz JL, Ma S (2008a) Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann Stat 36(2):587–613 es_ES
dc.description.references Huang J, Ma S, Zhang C-H (2008b) Adaptive Lasso for sparse high-dimensional regression. Stat Sin 1(374):1–28 es_ES
dc.description.references Huber PJ, Ronchetti EM (2009) Robust statistics. Wiley series in probability and statistics, 2nd edn. Wiley, Hoboken es_ES
dc.description.references Kim Y, Choi H, Oh HS (2008) Smoothly clipped absolute deviation on high dimensions. J Am Stat Assoc 103(484):1665–1673 es_ES
dc.description.references Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge es_ES
dc.description.references Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46(1):33–50 es_ES
dc.description.references Laria JC, Aguilera-Morillo MC, Lillo RE (2019) An iterative sparse-group Lasso. J Comput Graph Stat 28:722–731 es_ES
dc.description.references Li Y, Zhu J (2008) L$$_1$$-Norm quantile regression. J Comput Graph Stat 17(1):1–23 es_ES
dc.description.references Loh PL (2017) Statistical consistency and asymptotic normality for high-dimensional robust m-estimators. Ann Stat 45(2):866–896 es_ES
dc.description.references Nardi Y, Rinaldo A (2008) On the asymptotic properties of the group lasso estimator for linear models. Electron J Stat 2:605–633 es_ES
dc.description.references Poignard B (2018) Asymptotic theory of the adaptive Sparse Group Lasso. Ann Inst Stat Math 72:297–328 es_ES
dc.description.references Scheetz TE, Kim K-YA, Swiderski RE, Philp AR, Braun TA, Knudtson KL, Dorrance AM, DiBona GF, Huang J, Casavant TL, Sheffield VC, Stone EM (2006) Regulation of gene expression in the mammalian eye and its relevance to eye disease. Proc Natl Acad Sci 103(39):14429–14434 es_ES
dc.description.references Simon N, Friedman J, Hastie T, Tibshirani R (2013) A sparse-group lasso. J Comput Graph Stat 22(2):231–245 es_ES
dc.description.references Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102(43):15545–15550 es_ES
dc.description.references Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288 es_ES
dc.description.references Wang L, Wu Y, Li R (2012) Quantile regression for analyzing heterogeneity in ultra-high dimension. J Am Stat Assoc 107(497):214–222 es_ES
dc.description.references Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044 es_ES
dc.description.references Wu Y, Liu Y (2009) Variable selection in quantile regression. Stat Sin 19(2):801–817 es_ES
dc.description.references Yahya Algamal Z, Hisyam Lee M (2019) A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification. Adv Data Anal Classif 13:753–771 es_ES
dc.description.references Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B (Methodol) 68(1):49–67 es_ES
dc.description.references Zhao W, Zhang R, Liu J (2014) Sparse group variable selection based on quantile hierarchical Lasso. J Appl Stat 41(8):1658–1677 es_ES
dc.description.references Zhou N, Zhu J (2010) Group variable selection via a hierarchical lasso and its oracle property. Stat Interface 3:557–574 es_ES
dc.description.references Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(476):1418–1429 es_ES
dc.description.references Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem