- -

Topology and shape optimization of dissipative and hybrid mufflers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Topology and shape optimization of dissipative and hybrid mufflers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferrándiz-Catalá, Borja es_ES
dc.contributor.author Denia, F. D. es_ES
dc.contributor.author Martínez Casas, José es_ES
dc.contributor.author Nadal, Enrique es_ES
dc.contributor.author Ródenas, Juan José es_ES
dc.date.accessioned 2021-11-05T14:09:01Z
dc.date.available 2021-11-05T14:09:01Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 1615-147X es_ES
dc.identifier.uri http://hdl.handle.net/10251/176354
dc.description.abstract [EN] This article presents a Topology Optimization (TO) method developed for maximizing the acoustic attenuation of a perforated dissipative muffler in the targeted frequency range by optimally distributing the absorbent material within the chamber. The Finite Element Method (FEM) is applied to the wave equation formulated in terms of acoustic pressure (chamber) and velocity potential (central duct, due to the existence of thermal gradients and mean flow) in order to evaluate the acoustic performance of the noise control device in terms of Transmission Loss (TL). Sound propagation through the chamber fibrous material is modelled considering complex equivalent acoustic properties, which vary spatially not only as a function of temperature, but also as a function of the lling density, since non-homogeneous density distributions are considered. The acoustic coupling at the perforated duct is performed by introducing a coordinate-dependent equivalent impedance. The objective function to maximize is expressed as the mean TL in the targeted frequency range. The sensitivities of this function with respect to the filling density of each element in the chamber are evaluated following the standard adjoint method. The Method of Moving Asymptotes (MMA) is used to update the design variables at each iteration of the TO process, keeping the weight of absorbent material equal or lower than a given value, while maximizing attenuation. Additionally, several particular designs inferred from the topology optimization results are analyzed. For example, the sizing optimization of a number of rings is carried out simultaneously with the aforementioned TO process (density layout). A reactive chamber is added in order to evaluate the TL of a hybrid muffler and its shape optimization is also carried out simultaneously with the aforementioned TO. Results show an increase in the muffler's mean TL at target frequencies, for all cases under study, while the amount of absorbent material used is maintained or even reduced. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Structural and Multidisciplinary Optimization es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Muffler es_ES
dc.subject Acoustic attenuation es_ES
dc.subject Temperature gradient es_ES
dc.subject Topology optimization es_ES
dc.subject Transmission loss es_ES
dc.subject Absorbent material es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Topology and shape optimization of dissipative and hybrid mufflers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00158-020-02490-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89816-R/ES/MODELADO PERSONALIZADO DE LA RESPUESTA DEL TEJIDO OSEO DE PACIENTES A PARTIR DE IMAGENES 3D MEDIANTE MALLADOS CARTESIANOS DE ELEMENTOS FINITOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2016%2F007//MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Ferrándiz-Catalá, B.; Denia, FD.; Martínez Casas, J.; Nadal, E.; Ródenas, JJ. (2020). Topology and shape optimization of dissipative and hybrid mufflers. Structural and Multidisciplinary Optimization. 62(1):269-284. https://doi.org/10.1007/s00158-020-02490-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00158-020-02490-x es_ES
dc.description.upvformatpinicio 269 es_ES
dc.description.upvformatpfin 284 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 62 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\396673 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Allard JF, Atalla N (2009) Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials. Wiley, Chichester es_ES
dc.description.references Antebas AG, Denia FD, Pedrosa AM, Fuenmayor FJ (2013) A finite element approach for the acoustic modelling of perforated dissipative mufflers with non-homogeneous properties. Math Comput Model 57:1970–1978 es_ES
dc.description.references Atkinson KE (1989) An Introduction to Numerical Analysis. John Wiley & Sons, 2nd Edition es_ES
dc.description.references Azevedo FM, Moura MS, Vicente WM, Picelli R, Pavanello R (2017) Topology optimization of reactive acoustic mufflers using a bi-directional evolutionary optimization method. Struct Multidiscip Optim 58:2239–2252 es_ES
dc.description.references Barbieri R, Barbieri N (2006) Finite element acoustic simulation based shape optimization of a muffler. Appl Acoust 67:346–357 es_ES
dc.description.references Chang YC, Chiu MC (2008) Shape optimization of one-chamber perforated plug/non-plug mufflers by simulated annealing method. Int J Numer Methods Eng 74:1592–1620 es_ES
dc.description.references Chiu M (2011) Optimization design of hybrid mufflers on broadband frequencies using the genetic algorithm. Arch Acoust 36:795–822 es_ES
dc.description.references Christie DRA (1976) Measurement of the acoustic properties of a sound-absorbing material at high temperatures. J Sound Vib 46:347–355 es_ES
dc.description.references De Lima KF, Lenzi A, Barbieri R (2011) The study of reactive silencers by shape and parametric optimization techniques. Appl Acoust 72:142–150 es_ES
dc.description.references Delany ME, Bazley EN (1970) Acoustical properties of fibrous absorbent materials. Appl Acoust 3:105–116 es_ES
dc.description.references Denia FD, Sánchez-Orgaz EM, Baeza L, Kirby R (2016) Point collocation scheme in mufflers with temperature gradient and mean flow. J Comput Appl Math 291:127–141 es_ES
dc.description.references Denia FD, Sánchez-Orgaz EM, Martínez-Casas J, Kirby R (2015) Finite element based acoustic analysis of dissipative mufflers with high temperature and thermal-induced heterogeneity. Finite Elem Anal Des 101:46–57 es_ES
dc.description.references Denia FD, Selamet A, Fuenmayor FJ, Kirby R (2007) Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet extensions. J Sound Vib 302:1000–1017 es_ES
dc.description.references Denia FD, Selamet A, Martínez MJ, Torregrosa AJ (2006) Hybrid mufflers with short lateral chambers: analytical, numerical and experimental studies. In: 13th International Congress on Sound and Vibration (ICSV 13) Vienna es_ES
dc.description.references Fok VA (1963) in Russian. Alternatively, see S.N. Rschevkin, A course of lectures on the theory of sound, Pergamon, London es_ES
dc.description.references Ingard KU (1953) On the design of acoustic resonators. J Acoust Soc Am 25:1037–1061 es_ES
dc.description.references Jensen JS (2012) Topology optimization. In: Romeo F, Ruzzene M (eds) Wave Propagation in Linear and Nonlinear Periodic Media. CISM Courses and Lectures, vol 540. Springer, Vienna es_ES
dc.description.references Kirby R, Cummings A (1999) Prediction of the bulk acoustic properties of fibrous materials at low frequencies. Appl Acoust 56:101–125 es_ES
dc.description.references Kirby R, Denia FD (2007) Analytic mode matching for a circular dissipative muffler containing mean flow and a perforated pipe. J Acoust Soc Am 122:3471–3482 es_ES
dc.description.references Kirby R, Williams PT, Hill J (2013) The effect of temperature on the acoustic performance of splitter silencers. In: 42nd International Congress and Exposition on Noise Control Engineering – INTERNOISE, 7, pp 5826–5833 es_ES
dc.description.references Lee JS, Göransson P, Kim YY (2015) Topology optimization for three-phase materials distribution in a dissipative expansion chamber by unified multiphase modeling approach. Comput Methods Appl Mech Eng 287:191–211 es_ES
dc.description.references Lee JW (2015) Optimal topology of reactive muffler achieving target transmission loss values: Design and experiment. Appl Acoust 88:104–113 es_ES
dc.description.references Lee JW, Kim YY (2009) Topology optimization of muffler internal partitions for improving acoustical attenuation performance. Int J Numer Methods Eng 80:455–477 es_ES
dc.description.references Lee SH, Ih JG (2003) Empirical model of the acoustic impedance of a circular orifice in grazing mean flow. J Acoust Soc Am 114:98–113 es_ES
dc.description.references Munjal ML (2014) Acoustics of Ducts and Mufflers, John Wiley & Sons, 2nd Edn es_ES
dc.description.references Peat KS, Rathi KL (1995) A finite element analysis of the convected acoustic wave motion in dissipative mufflers. J Sound Vib 184:529–545 es_ES
dc.description.references Pierce AD (1990) Wave equation for sound in fluids with unsteady inhomogeneous flow. J Acoust Soc Am 87:2292–2299 es_ES
dc.description.references Rao SS (2011) The Finite Element Method in Engineering, Butterworth-Heinemann. 5th Edition es_ES
dc.description.references Sánchez-Orgaz EM (2016) Advanced numerical techniques for the acoustic modelling of materials and noise control devices in the exhaust system of internal combustion engines, Ph. D, Thesis, Universitat Politècnica de València es_ES
dc.description.references Selamet A, Lee IJ, Huff NT (2003) Acoustic attenuation of hybrid mufflers. J Sound Vib 262:509–527 es_ES
dc.description.references Selamet A, Xu MB, Lee IJ, Huff NT (2005) Dissipative expansion chambers with two concentric layers of fibrous material. International Journal of Vehicle Noise and Vibration 1:341– 357 es_ES
dc.description.references Selamet A, Xu MB, Lee IJ, Huff NT (2006) Effect of voids on the acoustics of perforated dissipative mufflers. International Journal of Vehicle Noise and Vibration 2:357–372 es_ES
dc.description.references Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424 es_ES
dc.description.references Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055 es_ES
dc.description.references Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance optimization. Struct Multidiscip Optim 22:116–124 es_ES
dc.description.references Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359– 373 es_ES
dc.description.references Williams PT, Kirby R, Malecki C, Hill J (2014) Measurement of the bulk acoustic properties of fibrous materials at high temperatures. Appl Acoust 77:29–36 es_ES
dc.description.references Yedeg EL, Wadbro E, Berggren M (2016) Interior layout topology optimization of a reactive muffler. Struct Multidiscip Optim 53:645–656 es_ES
dc.description.references Yoon GH (2013) Acoustic topology optimization of fibrous material with Delany–Bazley empirical material formulation. J Sound Vib 332:1172–1187 es_ES
dc.description.references Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The Finite Element Method: its Basis and Fundamentals. Elsevier Butterworth-Heinemann, Burlington es_ES
dc.description.references Zoutendijk G (1960) Methods of Feasible Directions. Elsevier, Amsterdam es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem