- -

Paths of the cervical instantaneous axis of rotation during active movements-patterns and reliability

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Paths of the cervical instantaneous axis of rotation during active movements-patterns and reliability

Show full item record

Venegas, W.; Inglés, M.; Page Del Pozo, AF.; Serra-Añó, P. (2020). Paths of the cervical instantaneous axis of rotation during active movements-patterns and reliability. Medical & Biological Engineering & Computing. 58(5):1147-1157. https://doi.org/10.1007/s11517-020-02153-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176404

Files in this item

Item Metadata

Title: Paths of the cervical instantaneous axis of rotation during active movements-patterns and reliability
Author: Venegas, William Inglés, Marta Page Del Pozo, Alvaro Felipe Serra-Añó, Pilar
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] The instantaneous helical axis (IHA) is a characteristic of neck movement that is very sensitive to changes in coordination and that has potential in the assessment of functional alterations. For its application in ...[+]
Subjects: Human movement analysis , Kinematics , Neck , Instantaneous helical axis , Intervertebral coordination , Reliability
Copyrigths: Cerrado
Source:
Medical & Biological Engineering & Computing. (issn: 0140-0118 )
DOI: 10.1007/s11517-020-02153-5
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11517-020-02153-5
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/
info:eu-repo/grantAgreement/Escuela Politécnica Nacional//Proyecto de investigación Junior PIJ-15-08//Modelado biomecánico del cuello basado en la imagen cinemática de la función articular para su aplicación en tecnologías para la salud y el bienestar del ser humano/
info:eu-repo/grantAgreement/AEI//DPI2017-84201-R//Integración de modelos biomecánicos en el desarrollo y operación de robots rehabilitadores reconfigurables/
Thanks:
This work was partially supported by the Spanish Government and co-financed by EU FEDER funds (Grant DPI2017-84201-R). The work of W. Venegas was supported by the Escuela Politecnica Nacional de Quito (Proj. PIJ-1508).
Type: Artículo

References

Snodgrass SJ, Cleland JA, Haskins R, Rivett DA et al (2014) The clinical utility of cervical range of motion in diagnosis, prognosis, and evaluating the effects of manipulation: a systematic review. Physiotherapy 100:290–304

Stenneberg MS, Rood M, de Bie R et al (2017) To what degree does active cervical range of motion differ between patients with neck pain, patients with whiplash, and those without neck pain? A systematic review and meta-analysis. Arch Phys Med Rehabil 8:1407–1434

van Trijffel E, Anderegg Q, Bossuyt PMM, Lucas C (2005) Inter-examiner reliability of passive assessment of intervertebral motion in the cervical and lumbar spine: a systematic review. Man Ther 10:256–269 [+]
Snodgrass SJ, Cleland JA, Haskins R, Rivett DA et al (2014) The clinical utility of cervical range of motion in diagnosis, prognosis, and evaluating the effects of manipulation: a systematic review. Physiotherapy 100:290–304

Stenneberg MS, Rood M, de Bie R et al (2017) To what degree does active cervical range of motion differ between patients with neck pain, patients with whiplash, and those without neck pain? A systematic review and meta-analysis. Arch Phys Med Rehabil 8:1407–1434

van Trijffel E, Anderegg Q, Bossuyt PMM, Lucas C (2005) Inter-examiner reliability of passive assessment of intervertebral motion in the cervical and lumbar spine: a systematic review. Man Ther 10:256–269

Bahat HS, Chen X, Reznik D et al (2015) Interactive cervical motion kinematics: sensitivity. specificity and clinically significant values for identifying kinematic impairments in patients with chronic neck pain. Man Ther 20:295–302

Baydal-Bertomeu JM, Page AF, Belda-Lois JM, Garrido-Jaén D, Prat JM (2011) Neck motion patterns in whiplash-associated disorders: quantifying variability and spontaneity of movement. Clin Biomech 26:29–34

Röijezon U, Djupsjöbacka M, Björklund M et al (2010) Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study. BMC Musculoskelet Disord 11:222

Sjölander P, Michaelson P, Jaric S, Djupsjöbacka M (2008) Sensorimotor disturbances in chronic neck pain—range of motion, peak velocity, smoothness of movement, and repositioning acuity. Man Ther 13:122–131

Michiels S, De Hertogh W, Truijen S et al (2013) The assessment of cervical sensory motor control: a systematic review focusing on measuring methods and their clinimetric characteristics. Gait Posture 38:1–7

de Zoete RM, Osmotherly PG, Rivett DA, Farrell SF, Snodgrass SJ (2017) Sensorimotor control in individuals with idiopathic neck pain and healthy individuals: a systematic review and meta-analysis. Arch Phys Med Rehabil 98:1257–1271

Woltring HJ, Long K, Osterbauer PJ, Fuhr AW (1994) Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics. J Biomech 27:1415–1432

Anderst WJ, Donaldson WF, Lee JY, Kang JD (2015) Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading. J Biomech 48:1286–1293

Baillargeon E, Anderst WJ (2013) Sensitivity, reliability and accuracy of the instant center of rotation calculation in the cervical spine during in vivo dynamic flexion-extension. J Biomech 46:670–676

Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15:633–648

Page A, de Rosario H, Mata V, Porcar R, Solaz J, Such MJ (2009) Kinematics of the trunk in sitting posture: an analysis based on the instantaneous axis of rotation. Ergonomics 52:695–706

Page A, de Rosario H, Gálvez JA, Mata V (2011) Representation of planar motion of complex joints by means of rolling pairs. Application to neck motion. J Biomech 44:747–750

Ellingson AM, Yelisetti V, Schulz CA, Bronfort G, Downing J, Keefe DF, Nuckley DJ (2013) Instantaneous helical axis methodology to identify aberrant neck motion. Clin Biomech 28:731–735

Grip H, Sundelin G, Gerdle B, Karlsson JS (2007) Variations in the axis of motion during head repositioning–a comparison of subjects with whiplash-associated disorders or non-specific neck pain and healthy controls. Clin Biomech 22:865–873

Grip H, Sundelin G, Gerdle B, Karlsson JS (2008) Cervical helical axis characteristics and its center of rotation during active head and upper arm movements—comparisons of whiplash-associated disorders, non-specific neck pain and asymptomatic individuals. J Biomech 41:2799–2805

Alsultan F, Cescon C, De Nunzio A et al (2019) Variability of the helical axis during active cervical movements in people with chronic neck pain. Clin Biomech 62:50–57

Barbero M, Falla D, Clijsen R, Ghirlanda F, Schneebeli A, Ernst MJ, Cescon C (2017) Can parameters of the helical axis be measured reliably during active cervical movements? Musculoskelet Sci Pract 27:150–154

Li ZM (2004) Functional degrees of freedom. Mot Control 10:301–310

Page A, Galvez JA, de Rosario H, Mata V, Prat J (2010) Optimal average path of the instantaneous helical axis in planar motions with one functional degree of freedom. J Biomech 43:375–378

Page A, de Rosario H, Mata V et al (2006) Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Med Biol Eng Comput 44:1113

Díaz-Rodríguez M, Valera A, Page A et al (2016) Dynamic parameter identification of subject-specific body segment parameters using robotics formalism: case study head complex. J Biomech Eng 138:051009

Page A, de Rosario H, Mata V, Atienza C (2009) Experimental analysis of rigid body motion. A vector method to determine finite and infinitesimal displacements from point coordinates. J Mech Des 131:031005

Woltring HJ (1994) 3-D attitude representation of human joints: a standardization proposal. J Biomech 27:1399–1414

Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D'Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I, Standardization and Terminology Committee of the International Society of Biomechanics (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 35:543–548

Weir JP (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19:231–240

Garofalo P, Cutti AG, Filipi MV et al (2009) Inter-operator reliability and prediction bands of a novel protocol to measure the coordinated movements of shoulder-girdle and humerus inc clinical settings. Med Biol Eng Comput 47:475–486

Duhamel A, Bourriez JL, Devos P, Krystkowiak P, Destée A, Derambure P, Defebvre L (2004) Statistical tools for clinical gait analysis. Gait Posture 20:204–212

Jaspers E, Feys H, Bruyninckx H, Harlaar J, Molenaers G, Desloovere K (2011) Upper limb kinematics: development and reliability of a clinical protocol for children. Gait Posture 33:279–285

Jordan K (2000) Assessment of published reliability studies for cervical spine range-of-motion measurement tools. J Manip Physiol Ther 23:180–195

de Koning CH, van den Heuvel SP, Staal JB, Smits-Engelsman BC, Hendriks EJ (2008) Clinimetric evaluation of active range of motion measures in patients with non-specific neck pain: a systematic review. Eur Spine J 17:905–921

Williams MA, McCarthy CJ, Chorti A et al (2010) A systematic review of reliability and validity studies of methods for measuring active and passive cervical range of motion. J Manip Physiol Ther 33:138–155

Tsang SM, Szeto GP, Lee RY (2013) Movement coordination and differential kinematics of the cervical and thoracic spines in people with chronic neck pain. Clin Biomech 28:610–617

Michiels S, Hallemans A, Van de Heyning P et al (2014) Measurement of cervical sensorimotor control: the reliability of a continuous linear movement test. Man Ther 19:399–404

Bahat HS, Sprecher E, Sela I, Treleaven J (2016) Neck motion kinematics: an inter-tester reliability study using an interactive neck VR assessment in asymptomatic individuals. Eur Spine J 25:2139–2148

Assink N, Bergman GJ, Knoester B et al (2005) Interobserver reliability of neck-mobility measurement by means of the flock-of-birds electromagnetic tracking system. J Manip Physiol Ther 28:408–413

Anderst W, Baillargeon E, Donaldson W, Lee J, Kang J (2013) Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension: implications for artificial disc design and evaluation of motion quality following arthrodesis. Spine 38:E594–E601

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record