dc.contributor.author |
Venegas, William
|
es_ES |
dc.contributor.author |
Inglés, Marta
|
es_ES |
dc.contributor.author |
Page Del Pozo, Alvaro Felipe
|
es_ES |
dc.contributor.author |
Serra-Añó, Pilar
|
es_ES |
dc.date.accessioned |
2021-11-05T14:10:13Z |
|
dc.date.available |
2021-11-05T14:10:13Z |
|
dc.date.issued |
2020-03 |
es_ES |
dc.identifier.issn |
0140-0118 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/176404 |
|
dc.description.abstract |
[EN] The instantaneous helical axis (IHA) is a characteristic of neck movement that is very sensitive to changes in coordination and that has potential in the assessment of functional alterations. For its application in the clinical setting, normative patterns must be available, and its reliability must be established. The purpose of this work is to describe the continuous paths of the IHA during cyclic movements of flexion-extension (FE), lateral bending (LB), and axial rotation (AR) and to quantify their reliability. Fifteen healthy volunteers participated in the study; two repetitions were made on the same day (by different operators) and over an 8-day interval (by the same operator) to evaluate the inter-operator and inter-session reliability, respectively. The paths described by the IHA suggest a sequential movement of the vertebrae in the FE movement, with a large vertical displacement (mean, 10 cm). The IHA displacement in LB and AR movements are smaller. The paths described by the IHAs have a very high reliability for FE movement, although it is somewhat lower for LB and RA movements. The standard error of measurement (SEM) is less than 0.5 cm. These results show that the paths of the IHA are reliable enough to evaluate changes in the coordination of intervertebral movement. |
es_ES |
dc.description.sponsorship |
This work was partially supported by the Spanish Government and co-financed by EU FEDER funds (Grant DPI2017-84201-R). The work of W. Venegas was supported by the Escuela Politecnica Nacional de Quito (Proj. PIJ-1508). |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer-Verlag |
es_ES |
dc.relation.ispartof |
Medical & Biological Engineering & Computing |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Human movement analysis |
es_ES |
dc.subject |
Kinematics |
es_ES |
dc.subject |
Neck |
es_ES |
dc.subject |
Instantaneous helical axis |
es_ES |
dc.subject |
Intervertebral coordination |
es_ES |
dc.subject |
Reliability |
es_ES |
dc.subject.classification |
FISICA APLICADA |
es_ES |
dc.title |
Paths of the cervical instantaneous axis of rotation during active movements-patterns and reliability |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/s11517-020-02153-5 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/Escuela Politécnica Nacional//Proyecto de investigación Junior PIJ-15-08//Modelado biomecánico del cuello basado en la imagen cinemática de la función articular para su aplicación en tecnologías para la salud y el bienestar del ser humano/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI//DPI2017-84201-R//Integración de modelos biomecánicos en el desarrollo y operación de robots rehabilitadores reconfigurables/ |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada |
es_ES |
dc.description.bibliographicCitation |
Venegas, W.; Inglés, M.; Page Del Pozo, AF.; Serra-Añó, P. (2020). Paths of the cervical instantaneous axis of rotation during active movements-patterns and reliability. Medical & Biological Engineering & Computing. 58(5):1147-1157. https://doi.org/10.1007/s11517-020-02153-5 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1007/s11517-020-02153-5 |
es_ES |
dc.description.upvformatpinicio |
1147 |
es_ES |
dc.description.upvformatpfin |
1157 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
58 |
es_ES |
dc.description.issue |
5 |
es_ES |
dc.identifier.pmid |
32193862 |
es_ES |
dc.relation.pasarela |
S\425992 |
es_ES |
dc.contributor.funder |
Escuela Politécnica Nacional |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.description.references |
Snodgrass SJ, Cleland JA, Haskins R, Rivett DA et al (2014) The clinical utility of cervical range of motion in diagnosis, prognosis, and evaluating the effects of manipulation: a systematic review. Physiotherapy 100:290–304 |
es_ES |
dc.description.references |
Stenneberg MS, Rood M, de Bie R et al (2017) To what degree does active cervical range of motion differ between patients with neck pain, patients with whiplash, and those without neck pain? A systematic review and meta-analysis. Arch Phys Med Rehabil 8:1407–1434 |
es_ES |
dc.description.references |
van Trijffel E, Anderegg Q, Bossuyt PMM, Lucas C (2005) Inter-examiner reliability of passive assessment of intervertebral motion in the cervical and lumbar spine: a systematic review. Man Ther 10:256–269 |
es_ES |
dc.description.references |
Bahat HS, Chen X, Reznik D et al (2015) Interactive cervical motion kinematics: sensitivity. specificity and clinically significant values for identifying kinematic impairments in patients with chronic neck pain. Man Ther 20:295–302 |
es_ES |
dc.description.references |
Baydal-Bertomeu JM, Page AF, Belda-Lois JM, Garrido-Jaén D, Prat JM (2011) Neck motion patterns in whiplash-associated disorders: quantifying variability and spontaneity of movement. Clin Biomech 26:29–34 |
es_ES |
dc.description.references |
Röijezon U, Djupsjöbacka M, Björklund M et al (2010) Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study. BMC Musculoskelet Disord 11:222 |
es_ES |
dc.description.references |
Sjölander P, Michaelson P, Jaric S, Djupsjöbacka M (2008) Sensorimotor disturbances in chronic neck pain—range of motion, peak velocity, smoothness of movement, and repositioning acuity. Man Ther 13:122–131 |
es_ES |
dc.description.references |
Michiels S, De Hertogh W, Truijen S et al (2013) The assessment of cervical sensory motor control: a systematic review focusing on measuring methods and their clinimetric characteristics. Gait Posture 38:1–7 |
es_ES |
dc.description.references |
de Zoete RM, Osmotherly PG, Rivett DA, Farrell SF, Snodgrass SJ (2017) Sensorimotor control in individuals with idiopathic neck pain and healthy individuals: a systematic review and meta-analysis. Arch Phys Med Rehabil 98:1257–1271 |
es_ES |
dc.description.references |
Woltring HJ, Long K, Osterbauer PJ, Fuhr AW (1994) Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics. J Biomech 27:1415–1432 |
es_ES |
dc.description.references |
Anderst WJ, Donaldson WF, Lee JY, Kang JD (2015) Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading. J Biomech 48:1286–1293 |
es_ES |
dc.description.references |
Baillargeon E, Anderst WJ (2013) Sensitivity, reliability and accuracy of the instant center of rotation calculation in the cervical spine during in vivo dynamic flexion-extension. J Biomech 46:670–676 |
es_ES |
dc.description.references |
Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15:633–648 |
es_ES |
dc.description.references |
Page A, de Rosario H, Mata V, Porcar R, Solaz J, Such MJ (2009) Kinematics of the trunk in sitting posture: an analysis based on the instantaneous axis of rotation. Ergonomics 52:695–706 |
es_ES |
dc.description.references |
Page A, de Rosario H, Gálvez JA, Mata V (2011) Representation of planar motion of complex joints by means of rolling pairs. Application to neck motion. J Biomech 44:747–750 |
es_ES |
dc.description.references |
Ellingson AM, Yelisetti V, Schulz CA, Bronfort G, Downing J, Keefe DF, Nuckley DJ (2013) Instantaneous helical axis methodology to identify aberrant neck motion. Clin Biomech 28:731–735 |
es_ES |
dc.description.references |
Grip H, Sundelin G, Gerdle B, Karlsson JS (2007) Variations in the axis of motion during head repositioning–a comparison of subjects with whiplash-associated disorders or non-specific neck pain and healthy controls. Clin Biomech 22:865–873 |
es_ES |
dc.description.references |
Grip H, Sundelin G, Gerdle B, Karlsson JS (2008) Cervical helical axis characteristics and its center of rotation during active head and upper arm movements—comparisons of whiplash-associated disorders, non-specific neck pain and asymptomatic individuals. J Biomech 41:2799–2805 |
es_ES |
dc.description.references |
Alsultan F, Cescon C, De Nunzio A et al (2019) Variability of the helical axis during active cervical movements in people with chronic neck pain. Clin Biomech 62:50–57 |
es_ES |
dc.description.references |
Barbero M, Falla D, Clijsen R, Ghirlanda F, Schneebeli A, Ernst MJ, Cescon C (2017) Can parameters of the helical axis be measured reliably during active cervical movements? Musculoskelet Sci Pract 27:150–154 |
es_ES |
dc.description.references |
Li ZM (2004) Functional degrees of freedom. Mot Control 10:301–310 |
es_ES |
dc.description.references |
Page A, Galvez JA, de Rosario H, Mata V, Prat J (2010) Optimal average path of the instantaneous helical axis in planar motions with one functional degree of freedom. J Biomech 43:375–378 |
es_ES |
dc.description.references |
Page A, de Rosario H, Mata V et al (2006) Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Med Biol Eng Comput 44:1113 |
es_ES |
dc.description.references |
Díaz-Rodríguez M, Valera A, Page A et al (2016) Dynamic parameter identification of subject-specific body segment parameters using robotics formalism: case study head complex. J Biomech Eng 138:051009 |
es_ES |
dc.description.references |
Page A, de Rosario H, Mata V, Atienza C (2009) Experimental analysis of rigid body motion. A vector method to determine finite and infinitesimal displacements from point coordinates. J Mech Des 131:031005 |
es_ES |
dc.description.references |
Woltring HJ (1994) 3-D attitude representation of human joints: a standardization proposal. J Biomech 27:1399–1414 |
es_ES |
dc.description.references |
Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D'Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I, Standardization and Terminology Committee of the International Society of Biomechanics (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 35:543–548 |
es_ES |
dc.description.references |
Weir JP (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19:231–240 |
es_ES |
dc.description.references |
Garofalo P, Cutti AG, Filipi MV et al (2009) Inter-operator reliability and prediction bands of a novel protocol to measure the coordinated movements of shoulder-girdle and humerus inc clinical settings. Med Biol Eng Comput 47:475–486 |
es_ES |
dc.description.references |
Duhamel A, Bourriez JL, Devos P, Krystkowiak P, Destée A, Derambure P, Defebvre L (2004) Statistical tools for clinical gait analysis. Gait Posture 20:204–212 |
es_ES |
dc.description.references |
Jaspers E, Feys H, Bruyninckx H, Harlaar J, Molenaers G, Desloovere K (2011) Upper limb kinematics: development and reliability of a clinical protocol for children. Gait Posture 33:279–285 |
es_ES |
dc.description.references |
Jordan K (2000) Assessment of published reliability studies for cervical spine range-of-motion measurement tools. J Manip Physiol Ther 23:180–195 |
es_ES |
dc.description.references |
de Koning CH, van den Heuvel SP, Staal JB, Smits-Engelsman BC, Hendriks EJ (2008) Clinimetric evaluation of active range of motion measures in patients with non-specific neck pain: a systematic review. Eur Spine J 17:905–921 |
es_ES |
dc.description.references |
Williams MA, McCarthy CJ, Chorti A et al (2010) A systematic review of reliability and validity studies of methods for measuring active and passive cervical range of motion. J Manip Physiol Ther 33:138–155 |
es_ES |
dc.description.references |
Tsang SM, Szeto GP, Lee RY (2013) Movement coordination and differential kinematics of the cervical and thoracic spines in people with chronic neck pain. Clin Biomech 28:610–617 |
es_ES |
dc.description.references |
Michiels S, Hallemans A, Van de Heyning P et al (2014) Measurement of cervical sensorimotor control: the reliability of a continuous linear movement test. Man Ther 19:399–404 |
es_ES |
dc.description.references |
Bahat HS, Sprecher E, Sela I, Treleaven J (2016) Neck motion kinematics: an inter-tester reliability study using an interactive neck VR assessment in asymptomatic individuals. Eur Spine J 25:2139–2148 |
es_ES |
dc.description.references |
Assink N, Bergman GJ, Knoester B et al (2005) Interobserver reliability of neck-mobility measurement by means of the flock-of-birds electromagnetic tracking system. J Manip Physiol Ther 28:408–413 |
es_ES |
dc.description.references |
Anderst W, Baillargeon E, Donaldson W, Lee J, Kang J (2013) Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension: implications for artificial disc design and evaluation of motion quality following arthrodesis. Spine 38:E594–E601 |
es_ES |