- -

Wheel shape optimization approaches to reduce railway rolling noise

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Wheel shape optimization approaches to reduce railway rolling noise

Show full item record

García-Andrés, FX.; Gutiérrez-Gil, J.; Martínez Casas, J.; Denia, FD. (2020). Wheel shape optimization approaches to reduce railway rolling noise. Structural and Multidisciplinary Optimization. 62(5):2555-2570. https://doi.org/10.1007/s00158-020-02700-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176427

Files in this item

Item Metadata

Title: Wheel shape optimization approaches to reduce railway rolling noise
Author: García-Andrés, Francesc Xavier Gutiérrez-Gil, Jorge Martínez Casas, José Denia, F. D.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] A wheel shape optimization of a railway wheel cross section by means of Genetic Algorithms (GAs) is presented with the aim of minimizing rolling noise radiation. Two different approaches have been implemented with ...[+]
Subjects: Railway wheel , Geometric optimization , Genetic algorithms , Rolling noise , Finite element method , TWINS , Response surface
Copyrigths: Reserva de todos los derechos
Source:
Structural and Multidisciplinary Optimization. (issn: 1615-147X )
DOI: 10.1007/s00158-020-02700-6
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00158-020-02700-6
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2016%2F007//MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/
info:eu-repo/grantAgreement/MINECO//BES-2014-070208/ES/BES-2014-070208/
Thanks:
This study was financially supported by Ministerio de Ciencia, Innovacion y Universidades - Agencia Estatal de Investigacion, European Regional Development Fund (project TRA2017-84701-R), and Conselleria d'Educacio, ...[+]
Type: Artículo

References

Beranek LL (2007) Basic acoustical quantities: levels and decibels, chapter 1 pp 1–24, John Wiley & Sons, Ltd

Bouvet P, Vincent N, Coblentz A, Demilly F (2000) Optimization of resilient wheels for rolling noise control. J Sound Vib 231(3):765–777

Bühler S (2006) Methods and results of field testing of a retrofitted freight train with composite brake blocks. J Sound Vib 293(3-5):1041–1050 [+]
Beranek LL (2007) Basic acoustical quantities: levels and decibels, chapter 1 pp 1–24, John Wiley & Sons, Ltd

Bouvet P, Vincent N, Coblentz A, Demilly F (2000) Optimization of resilient wheels for rolling noise control. J Sound Vib 231(3):765–777

Bühler S (2006) Methods and results of field testing of a retrofitted freight train with composite brake blocks. J Sound Vib 293(3-5):1041–1050

Cigada A, Manzoni S, Vanali M (2008) Vibro-acoustic characterization of railway wheels. Appl Acoust 69(6):530–545

Clausen U, Doll C, Franklin FJ, Franklin GV, Heinrichmeyer H, Kochsiek J, Rothergatter W, Sieber N (2012) Reducing railway noise pollution. Technical Report, Policy Department Structural and Cohesion Policies, European Parliament

Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Method in Appl M 191(11-12):1245–1287

Cui D, Wang R, Allen P, An B, Li L, Wen Z (2019) Multi-objective optimization of electric multiple unit wheel profile from wheel flange wear viewpoint. Struct Multidiscipl Optim 59(1):279–289

de Vos P (2016) Railway noise in Europe. Technical Report, International Union of Railways

DIN (2017) Railway applications. Wheelsets and bogies. Monobloc wheels. Design assessment procedure. Part 1: forged and rolled wheels DIN-prEN-13979-1:2017. Technical standard, DIN Standards Committee Railway

Efthimeros GA, Photeinos DI, Diamantis ZG, Tsahalis DT (2002) Vibration/noise optimization of a FEM railway wheel model. Eng Computation 19(7-8):922–931

Fahy F, Gardonio P (2007) Sound and structural vibration, 2nd edition. Academic Press, Oxford

Garcia-Andrés X, Gutiérrez-Gil J, Martínez-Casas J, Denia FD (2019) Sound power minimization of a railway wheel by means of a modal-based geometric optimization technique. In: Proceedings of 48th International Congress and Exhibition on Noise Control Engineering

Grassie SL, Gregory RW, Harrison D, Johnson KL (1982) The dynamic response of railway track to high frequency vertical excitation. J Mechan Eng Sci 24(2):77–90

Hare W, Nutini J, Tesfamariam S (2013) A survey of non-gradient optimization methods in structural engineering. Adv Eng Softw 59:19–28

Holland JH (1975) Adaptation in natural and artificial systems, 1st edition. University of Michigan Press, Ann Arbor, MI

Janssens MHA, Thompson DJ, de Beer FG (2014a) TWINS version 3.3 Track-Wheel Interaction Noise Software user manual. TNO report

Janssens MHA, Thompson DJ, de Beer FG, Dittrich M, Jansen H (2014b) TWINS version 3.3 Track-Wheel Interaction Noise Software theoretical manual. TNO report

Jones CJC, Hardy AEJ, Jones RRK, Wang A (1996) Bogie shrouds and low track-side barriers for the control of railway vehicle rolling noise. J Sound Vib 193(1):427–431

Jones CJC, Thompson DJ (2003) Extended validation of a theoretical model for railway rolling noise using novel wheel and track designs. J Sound Vib 267(3):509–522

Kalker JJ (1967) On the rolling contact of two elastic bodies in the presence of dry friction. PhD thesis, Technical University of Delft

Knothe K, Gross-Thebing A (1986) Derivation of frequency dependent creep coefficients based on an elastic half-space model. Vehicle Syst Dyn 15(3):133–153

Lang S (1985) Complex analysis, 2nd edition. Springer New York, New York

Lee S, Lee DH, Lee J (2019) Integrated shape-morphing and metamodel-based optimization of railway wheel web considering thermo-mechanical loads. Struct Multidiscipl Optim 60(1):315–330

Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscipl Optim 26(6):369–395

Merideno I, Nieto J, Gil-Negrete N, Giménez Ortiz JG, Landaberea A, Iartza J (2014) Theoretical prediction of the damping of a railway wheel with sandwich-type dampers. J Sound Vib 333(20):4897–4911

Nielsen JCO (1994) Dynamic interaction between wheel and track - A parametric search towards an optimal design of rail structures. Vehicle Syst Dyn 23(1):115–132

Nielsen JCO (2000) Acoustic optimization of railway sleepers. J Sound Vib 231(3):753–764

Nielsen JCO, Fredö CR (2006) Multi-disciplinary optimization of railway wheels. J Sound Vib 293(3-5):510–521

Petyt M (2010) Vibration of solids, 2nd edition. Cambridge University Press, Cambridge

Remington PJ (1976) Wheel/rail noise part IV: rolling noise. J Sound Vib 46(3):419–436

Remington PJ (1987) Wheel/rail rolling noise, II: validation of the theory. J Acoust Soc Am 81 (6):1824–1832

Rios LM, Sahinidis NV (2013) Derivative-free optimization: a review of algorithms and comparison of software implementations. J Global Optim 56(3):1247–1293

Thompson DJ (1988) Predictions of acoustic radiation from vibrating wheels and rails. J Sound Vib 120(2):275–280

Thompson DJ (1991) Wheel-rail noise: theoretical modelling of the generation of vibrations. PhD thesis, University of Southampton

Thompson DJ (1993a) Wheel-rail noise generation, part I: introduction and interaction model. J Sound Vib 161(3):387–400

Thompson DJ (1993b) Wheel-rail noise generation, part II: wheel vibration. J Sound Vib 161 (3):401–419

Thompson DJ (1993c) Wheel-rail noise generation, part IV: contact zone and results. J Sound Vib 161(3):447–466

Thompson DJ (2010) Railway noise and vibration. Mechanisms, modelling and means of control, 1st edition. Elsevier, Amsterdam

Thompson DJ, Fodiman P, Mahé H (1996a) Experimental validation of the TWINS prediction program for rolling noise, part 2: results. J Sound Vib 193(1):137–147

Thompson DJ, Hemsworth B, Vincent N (1996b) Experimental validation of the TWINS prediction program for rolling noise, part 1: description of the model and method. J Sound Vib 193(1):123–135

Thompson DJ, Jones CJC (2002) Sound radiation from a vibrating railway wheel. J Sound Vib 253(2):401–419

Thompson DJ, Squicciarini G, Zhang J, Lopez-Arteaga I, Zea E, Dittrich M, Jansen E, Arcas K, Cierco E, Magrans F, Malkoun A, Iturritxa E, Guiral A, Stangl M, Schleinzer G, Martin-Lopez B, Chaufour C, Wändell J (2018) Assessment of measurement-based methods for separating wheel and track contributions to railway rolling noise. Appl Acoust 140:48–62

Timoshenko SP, Gere JM (1963) Theory of elastic stability. Dover, Mineola, New York, 2nd edition

UNE (2011) Railway applications. Wheelsets and bogies. Monobloc wheels. Technical approval procedure. Part 1: forged and rolled wheels UNE-EN-13979-1:2006. Technical standard, Asociación Española de Normalización (UNE)

Vincent N, Bouvet P, Thompson DJ, Gautier PE (1996) Theoretical optimization of track components to reduce rolling noise. J Sound Vib 193(1):161–171

Wang Z, Jiao Y, Chen Z (2019) Parameter study of friction damping ring for railway wheels based on modal analysis. Appl Acoust 153:140–146

WHO (2011) Burden of disease from environmental noise. Technical Report, European Centre for Environment and Health

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record