- -

Wheel shape optimization approaches to reduce railway rolling noise

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wheel shape optimization approaches to reduce railway rolling noise

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Andrés, Francesc Xavier es_ES
dc.contributor.author Gutiérrez-Gil, Jorge es_ES
dc.contributor.author Martínez Casas, José es_ES
dc.contributor.author Denia, F. D. es_ES
dc.date.accessioned 2021-11-05T14:10:41Z
dc.date.available 2021-11-05T14:10:41Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 1615-147X es_ES
dc.identifier.uri http://hdl.handle.net/10251/176427
dc.description.abstract [EN] A wheel shape optimization of a railway wheel cross section by means of Genetic Algorithms (GAs) is presented with the aim of minimizing rolling noise radiation. Two different approaches have been implemented with this purpose, one centred on direct Sound poWer Level (SWL) minimization, calculated using TWINS methodology, and another one emphasizing computational efficiency, focused on natural frequencies maximization. Numerical simulations are carried out with a Finite Element Method (FEM) model using general axisymmetric elements. The design space is defined by a geometric parametrization of the wheel cross section with four parameters: wheel radius, a web thickness factor, fillet radius and web offset. For all wheel candidates a high-cycle fatigue analysis has been performed according to actual standards, in order to assure structural feasibility. Rolling noise reductions have been achieved, with a decrease of up to 5 dB(A) when considering the wheel component. Response surfaces have been also computed to study the dependency of the objective functions on the geometric parameters and to test the adequacy of the optimization algorithm applied. es_ES
dc.description.sponsorship This study was financially supported by Ministerio de Ciencia, Innovacion y Universidades - Agencia Estatal de Investigacion, European Regional Development Fund (project TRA2017-84701-R), and Conselleria d'Educacio, Investigacio, Cultura i Esport (Generalitat Valenciana, project Prometeo/2016/007). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Structural and Multidisciplinary Optimization es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Railway wheel es_ES
dc.subject Geometric optimization es_ES
dc.subject Genetic algorithms es_ES
dc.subject Rolling noise es_ES
dc.subject Finite element method es_ES
dc.subject TWINS es_ES
dc.subject Response surface es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Wheel shape optimization approaches to reduce railway rolling noise es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00158-020-02700-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2016%2F007//MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-070208/ES/BES-2014-070208/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation García-Andrés, FX.; Gutiérrez-Gil, J.; Martínez Casas, J.; Denia, FD. (2020). Wheel shape optimization approaches to reduce railway rolling noise. Structural and Multidisciplinary Optimization. 62(5):2555-2570. https://doi.org/10.1007/s00158-020-02700-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00158-020-02700-6 es_ES
dc.description.upvformatpinicio 2555 es_ES
dc.description.upvformatpfin 2570 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 62 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\408652 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA Y EMPRESA es_ES
dc.description.references Beranek LL (2007) Basic acoustical quantities: levels and decibels, chapter 1 pp 1–24, John Wiley & Sons, Ltd es_ES
dc.description.references Bouvet P, Vincent N, Coblentz A, Demilly F (2000) Optimization of resilient wheels for rolling noise control. J Sound Vib 231(3):765–777 es_ES
dc.description.references Bühler S (2006) Methods and results of field testing of a retrofitted freight train with composite brake blocks. J Sound Vib 293(3-5):1041–1050 es_ES
dc.description.references Cigada A, Manzoni S, Vanali M (2008) Vibro-acoustic characterization of railway wheels. Appl Acoust 69(6):530–545 es_ES
dc.description.references Clausen U, Doll C, Franklin FJ, Franklin GV, Heinrichmeyer H, Kochsiek J, Rothergatter W, Sieber N (2012) Reducing railway noise pollution. Technical Report, Policy Department Structural and Cohesion Policies, European Parliament es_ES
dc.description.references Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Method in Appl M 191(11-12):1245–1287 es_ES
dc.description.references Cui D, Wang R, Allen P, An B, Li L, Wen Z (2019) Multi-objective optimization of electric multiple unit wheel profile from wheel flange wear viewpoint. Struct Multidiscipl Optim 59(1):279–289 es_ES
dc.description.references de Vos P (2016) Railway noise in Europe. Technical Report, International Union of Railways es_ES
dc.description.references DIN (2017) Railway applications. Wheelsets and bogies. Monobloc wheels. Design assessment procedure. Part 1: forged and rolled wheels DIN-prEN-13979-1:2017. Technical standard, DIN Standards Committee Railway es_ES
dc.description.references Efthimeros GA, Photeinos DI, Diamantis ZG, Tsahalis DT (2002) Vibration/noise optimization of a FEM railway wheel model. Eng Computation 19(7-8):922–931 es_ES
dc.description.references Fahy F, Gardonio P (2007) Sound and structural vibration, 2nd edition. Academic Press, Oxford es_ES
dc.description.references Garcia-Andrés X, Gutiérrez-Gil J, Martínez-Casas J, Denia FD (2019) Sound power minimization of a railway wheel by means of a modal-based geometric optimization technique. In: Proceedings of 48th International Congress and Exhibition on Noise Control Engineering es_ES
dc.description.references Grassie SL, Gregory RW, Harrison D, Johnson KL (1982) The dynamic response of railway track to high frequency vertical excitation. J Mechan Eng Sci 24(2):77–90 es_ES
dc.description.references Hare W, Nutini J, Tesfamariam S (2013) A survey of non-gradient optimization methods in structural engineering. Adv Eng Softw 59:19–28 es_ES
dc.description.references Holland JH (1975) Adaptation in natural and artificial systems, 1st edition. University of Michigan Press, Ann Arbor, MI es_ES
dc.description.references Janssens MHA, Thompson DJ, de Beer FG (2014a) TWINS version 3.3 Track-Wheel Interaction Noise Software user manual. TNO report es_ES
dc.description.references Janssens MHA, Thompson DJ, de Beer FG, Dittrich M, Jansen H (2014b) TWINS version 3.3 Track-Wheel Interaction Noise Software theoretical manual. TNO report es_ES
dc.description.references Jones CJC, Hardy AEJ, Jones RRK, Wang A (1996) Bogie shrouds and low track-side barriers for the control of railway vehicle rolling noise. J Sound Vib 193(1):427–431 es_ES
dc.description.references Jones CJC, Thompson DJ (2003) Extended validation of a theoretical model for railway rolling noise using novel wheel and track designs. J Sound Vib 267(3):509–522 es_ES
dc.description.references Kalker JJ (1967) On the rolling contact of two elastic bodies in the presence of dry friction. PhD thesis, Technical University of Delft es_ES
dc.description.references Knothe K, Gross-Thebing A (1986) Derivation of frequency dependent creep coefficients based on an elastic half-space model. Vehicle Syst Dyn 15(3):133–153 es_ES
dc.description.references Lang S (1985) Complex analysis, 2nd edition. Springer New York, New York es_ES
dc.description.references Lee S, Lee DH, Lee J (2019) Integrated shape-morphing and metamodel-based optimization of railway wheel web considering thermo-mechanical loads. Struct Multidiscipl Optim 60(1):315–330 es_ES
dc.description.references Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscipl Optim 26(6):369–395 es_ES
dc.description.references Merideno I, Nieto J, Gil-Negrete N, Giménez Ortiz JG, Landaberea A, Iartza J (2014) Theoretical prediction of the damping of a railway wheel with sandwich-type dampers. J Sound Vib 333(20):4897–4911 es_ES
dc.description.references Nielsen JCO (1994) Dynamic interaction between wheel and track - A parametric search towards an optimal design of rail structures. Vehicle Syst Dyn 23(1):115–132 es_ES
dc.description.references Nielsen JCO (2000) Acoustic optimization of railway sleepers. J Sound Vib 231(3):753–764 es_ES
dc.description.references Nielsen JCO, Fredö CR (2006) Multi-disciplinary optimization of railway wheels. J Sound Vib 293(3-5):510–521 es_ES
dc.description.references Petyt M (2010) Vibration of solids, 2nd edition. Cambridge University Press, Cambridge es_ES
dc.description.references Remington PJ (1976) Wheel/rail noise part IV: rolling noise. J Sound Vib 46(3):419–436 es_ES
dc.description.references Remington PJ (1987) Wheel/rail rolling noise, II: validation of the theory. J Acoust Soc Am 81 (6):1824–1832 es_ES
dc.description.references Rios LM, Sahinidis NV (2013) Derivative-free optimization: a review of algorithms and comparison of software implementations. J Global Optim 56(3):1247–1293 es_ES
dc.description.references Thompson DJ (1988) Predictions of acoustic radiation from vibrating wheels and rails. J Sound Vib 120(2):275–280 es_ES
dc.description.references Thompson DJ (1991) Wheel-rail noise: theoretical modelling of the generation of vibrations. PhD thesis, University of Southampton es_ES
dc.description.references Thompson DJ (1993a) Wheel-rail noise generation, part I: introduction and interaction model. J Sound Vib 161(3):387–400 es_ES
dc.description.references Thompson DJ (1993b) Wheel-rail noise generation, part II: wheel vibration. J Sound Vib 161 (3):401–419 es_ES
dc.description.references Thompson DJ (1993c) Wheel-rail noise generation, part IV: contact zone and results. J Sound Vib 161(3):447–466 es_ES
dc.description.references Thompson DJ (2010) Railway noise and vibration. Mechanisms, modelling and means of control, 1st edition. Elsevier, Amsterdam es_ES
dc.description.references Thompson DJ, Fodiman P, Mahé H (1996a) Experimental validation of the TWINS prediction program for rolling noise, part 2: results. J Sound Vib 193(1):137–147 es_ES
dc.description.references Thompson DJ, Hemsworth B, Vincent N (1996b) Experimental validation of the TWINS prediction program for rolling noise, part 1: description of the model and method. J Sound Vib 193(1):123–135 es_ES
dc.description.references Thompson DJ, Jones CJC (2002) Sound radiation from a vibrating railway wheel. J Sound Vib 253(2):401–419 es_ES
dc.description.references Thompson DJ, Squicciarini G, Zhang J, Lopez-Arteaga I, Zea E, Dittrich M, Jansen E, Arcas K, Cierco E, Magrans F, Malkoun A, Iturritxa E, Guiral A, Stangl M, Schleinzer G, Martin-Lopez B, Chaufour C, Wändell J (2018) Assessment of measurement-based methods for separating wheel and track contributions to railway rolling noise. Appl Acoust 140:48–62 es_ES
dc.description.references Timoshenko SP, Gere JM (1963) Theory of elastic stability. Dover, Mineola, New York, 2nd edition es_ES
dc.description.references UNE (2011) Railway applications. Wheelsets and bogies. Monobloc wheels. Technical approval procedure. Part 1: forged and rolled wheels UNE-EN-13979-1:2006. Technical standard, Asociación Española de Normalización (UNE) es_ES
dc.description.references Vincent N, Bouvet P, Thompson DJ, Gautier PE (1996) Theoretical optimization of track components to reduce rolling noise. J Sound Vib 193(1):161–171 es_ES
dc.description.references Wang Z, Jiao Y, Chen Z (2019) Parameter study of friction damping ring for railway wheels based on modal analysis. Appl Acoust 153:140–146 es_ES
dc.description.references WHO (2011) Burden of disease from environmental noise. Technical Report, European Centre for Environment and Health es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem