- -

A framework to predict the airborne noise inside railway vehicles with application to rolling noise

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A framework to predict the airborne noise inside railway vehicles with application to rolling noise

Mostrar el registro completo del ítem

Li, H.; Thompson, D.; Squicciarini, G.; Liu, X.; Rissmann, M.; Bouvet, P.; Denia, FD.... (2021). A framework to predict the airborne noise inside railway vehicles with application to rolling noise. Applied Acoustics. 179:1-15. https://doi.org/10.1016/j.apacoust.2021.108064

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176434

Ficheros en el ítem

Metadatos del ítem

Título: A framework to predict the airborne noise inside railway vehicles with application to rolling noise
Autor: Li, Hui Thompson, David Squicciarini, Giacomo Liu, Xiaowan Rissmann, Martin Bouvet, Pascal Denia, F. D. Baeza González, Luis Miguel Martin Jarillo, Julian Moreno Garcia-Loygorri, Juan
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] A framework is described for predicting the airborne noise inside railway vehicles which is applied to rolling noise sources. Statistical energy analysis (SEA) is used to predict the interior noise by subdividing the ...[+]
Palabras clave: Railway vehicle , Interior noise , Statistical energy analysis , 2.5D boundary element method , Rolling noise
Derechos de uso: Reserva de todos los derechos
Fuente:
Applied Acoustics. (issn: 0003-682X )
DOI: 10.1016/j.apacoust.2021.108064
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.apacoust.2021.108064
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/777564/EU/Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles/
Agradecimientos:
This work has been funded by the China Scholarship Council and the RUN2Rail H2020/Shift2Rail project (Grant agreement No: 777564). The contents of this publication only reflect the authors' views and the Shift2Rail Joint ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem