- -

Uso de zeolitas para el control de fuentes no puntuales de contaminación del agua: revisión

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Uso de zeolitas para el control de fuentes no puntuales de contaminación del agua: revisión

Show full item record

Gallo-González, AK.; Vázquez-Rodríguez, GA. (2021). Uso de zeolitas para el control de fuentes no puntuales de contaminación del agua: revisión. Ingeniería del agua. 25(4):241-255. https://doi.org/10.4995/ia.2021.15897

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176567

Files in this item

Item Metadata

Title: Uso de zeolitas para el control de fuentes no puntuales de contaminación del agua: revisión
Secondary Title: Use of zeolites to controlling nonpoint sources of water pollution: a review
Author: Gallo-González, Anna Karen Vázquez-Rodríguez, Gabriela Alejandra
Issued date:
Abstract:
[EN] In the Anthropocene, there are changes in the composition of freshwater due to pollution derived from point and non-point sources. In this work, zeolites, which are materials with the most diverse applications, are ...[+]


[ES] En el Antropoceno se constatan cambios en la composición del agua dulce debido a la contaminación derivada de fuentes puntuales y no puntuales. En este trabajo se presenta a las zeolitas, que son materiales con las ...[+]
Subjects: Zeolita , Escorrentía , Contaminación difusa , Calidad del agua , Infraestructura verde y azul , Zeolite , Runoff , Urbanization , Diffuse pollution , Water quality , Blue-green infrastructure
Copyrigths: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Source:
Ingeniería del agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2021.15897
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/ia.2021.15897
Thanks:
Anna Karen Gallo González agradece la beca otorgada por el Consejo Mexicano de Ciencia y Tecnología (CONACYTMéxico) para realizar sus estudios de posgrado.
Type: Artículo

References

Al-Anbari, R.H., Wootton, K.P., Durmanic, S., Deletic, A., Fletcher, T.D. 2008. Evaluation of media for the adsorption of stormwater pollutants. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.

Álvarez, S., Asci, S., Vorotnikova, E. 2016. Valuing the potential benefits of water quality improvements in watersheds affected by non-point source pollution. Water, 8(4), 112. https://doi.org/10.3390/w8040112

Baltrënas, P., Brannvall, E. 2006. Experimental investigation of a filter with natural sorbent charge for runoff cleaning from heavy metals and petroleum products. Journal of Environmental Engineering and Landscape Management, 14(1), 31-36. https://doi.org/10.1080/16486897.2006.9636876 [+]
Al-Anbari, R.H., Wootton, K.P., Durmanic, S., Deletic, A., Fletcher, T.D. 2008. Evaluation of media for the adsorption of stormwater pollutants. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.

Álvarez, S., Asci, S., Vorotnikova, E. 2016. Valuing the potential benefits of water quality improvements in watersheds affected by non-point source pollution. Water, 8(4), 112. https://doi.org/10.3390/w8040112

Baltrënas, P., Brannvall, E. 2006. Experimental investigation of a filter with natural sorbent charge for runoff cleaning from heavy metals and petroleum products. Journal of Environmental Engineering and Landscape Management, 14(1), 31-36. https://doi.org/10.1080/16486897.2006.9636876

Boller, M., Langbein, S., Steiner, M. 2007. Development and full-scale implementation of a new treatment scheme for road runoff. In: Highway and Urban Environment (G.M. Morrison, S. Rauch, eds.). Springer, Dordrecht, 453-463. https://doi.org/10.1007/978-1-4020-6010-6_39

Burri, N.M., Weather, R., Moeck, C., Schirmer, M. 2019. A review of threats to groundwater quality in the anthropocene. Science of the Total Environment 684, 136-154. https://doi.org/10.1016/j.scitotenv.2019.05.236

Delkash, M., Bakhshayesh, B.E., Kazemian, H. 2015. Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous and Mesoporous Materials, 214, 224-241. https://doi.org/10.1016/j.micromeso.2015.04.039

Dietz, M.E. 2007. Low impact development practices: A review of current research and recommendations for future directions. Water, Air, and Soil Pollution, 186(1-4), 351-363. https://doi.org/10.1007/s11270-007-9484-z

Eckart, K., McPhee, Z., Bolisetti, T. 2017. Performance and implementation of low impact development - A review. Science of the Total Environment, 607, 413-432. https://doi.org/10.1016/j.scitotenv.2017.06.254

Fairbairn, D.J., Elliott, S.M., Kiesling, R.L., Schoenfuss, H.L., Ferrey, M.L., Westerhoff, B.M. 2018. Contaminants of emerging concern in urban stormwater: Spatiotemporal patterns and removal by iron-enhanced sand filters (IESFs). Water Research, 145, 332-345. https://doi.org/10.1016/j.watres.2018.08.020

Gallo-González, A.K., Vázquez-Rodríguez, G.A. 2020. Recubrimiento de mordenita con magnetita para incrementar su capacidad de descontaminación de agua de escorrentía urbana. Revista Internacional de Desarrollo Regional Sustentable (RINDERESU), 5(2), 878-888.

González-Olmos, R., Kopinke, F.D., Mackenzie, K., Georgi, A. 2013. Hydrophobic Fe-zeolites for removal of MTBE from water by combination of adsorption and oxidation. Environmental Science and Technology, 47(5), 2353-2360. https://doi.org/10.1021/es303885y

Guarino-Bertholini, M. 2016. Innovative applications of natural zeolites. Doctoral dissertation, Queensland University of Technology, Australia.

Haile, T.M., Fuerhacker, M. 2018. Simultaneous adsorption of heavy metals from roadway stormwater runoff using different filter media in column studies. Water, 10(9), 1160. https://doi.org/10.3390/w10091160

Hesas, R.H., Baei, M.S., Rostami, H., Gardy, J., Hassanpour, A. 2019. An investigation on the capability of magnetically separable Fe3O4/mordenite zeolite for refinery oily wastewater purification. Journal of Environmental Management, 241, 525-534. https://doi.org/10.1016/j.jenvman.2018.09.005

Hough, M. 2004. Cities and natural process: A basis for sustainability, 2nd Edition. Routledge, Londres, UK. https://doi.org/10.4324/9780203643471

IZA. 2017. Zeolite Database. International Zeolite Association. Recuperado el 2 de julio de 2021 de http://www.iza-structure.org/databases/.

Jiménez-Castañeda, M.E., Medina, D.I. 2017. Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water, 9(4), 235. https://doi.org/10.3390/w9040235

Kaushal, S.S., Likens, G.E., Pace, M.L., Haq, S., Wood, K.L., Galella, J.G., Morel, C., Doody, T.R., Wessel, B., Kortelainen, P., Räike, A., Skinner, V., Utz, R., Jaworski, N. 2019. Novel 'chemical cocktails' in inland waters are a consequence of the freshwater salinization syndrome. Philosophical Transactions of the Royal Society B, 374(1764), 20180017. https://doi.org/10.1098/rstb.2018.0017

Kim, L.H., Kang, H.M., Bae, W. 2010. Treatment of particulates and metals from highway stormwater runoff using zeolite filtration. Desalination and Water Treatment, 19(1-3), 97-104. https://doi.org/10.5004/dwt.2010.1901

Król, M. 2020. Natural vs. Synthetic Zeolites. Crystals, 10(7), 622. https://doi.org/10.3390/cryst10070622

Krstić, V. 2021. Role of zeolite adsorbent in water treatment. In: Handbook of Nanomaterials for Wastewater Treatment (B. Bhanvase, S. Sonawane, V. Pawade, A. Pandit, eds.). Elsevier, Amsterdam, 417-481. https://doi.org/10.1016/B978-0-12-821496-1.00024-6

Li, Y., McCarthy, D.T., Deletic, A. 2016. Escherichia coli removal in copper-zeolite-integrated stormwater biofilters: effect of vegetation, operational time, intermittent drying weather. Ecological Engineering, 90, 234-243.

https://doi.org/10.1016/j.ecoleng.2016.01.066

Li, Y.L., McCarthy, D.T., Deletic, A. 2014. Stable copper-zeolite filter media for bacteria removal in stormwater. Journal of Hazardous Materials, 273, 222-230. https://doi.org/10.1016/j.jhazmat.2014.03.036

Luo, H., Guan, L., Jing, Z., Zhang, Z., Tao, M., Wang, Y., Chen, C. 2020. Removing nitrogen and phosphorus simultaneously in stormwater runoff using permeable asphalt pavement system with a zeolite-regulated reservoir. Journal of Water Reuse and Desalination, 10(2), 106-119. https://doi.org/10.2166/wrd.2020.057

Lv, G., Li, Z., Jiang, W.T., Ackley, C., Fenske, N., Demarco, N. 2014. Removal of Cr(VI) from water using Fe(II)-modified natural zeolite. Chemical Engineering Research and Design, 92(2), 384-390. https://doi.org/10.1016/j.cherd.2013.08.003

Mandelker, D.R. 1989. Controlling nonpoint source water pollution: Can it be done? Chicago-Kent Law Review, 65, 479. Recuperado el 2 de julio de 2021 de https://scholarship.kentlaw.iit.edu/cklawreview/vol65/iss2/9

Margeta, K., Logar, N.Z., Šiljeg, M., Farkaš, A. 2013. Natural zeolites in water treatment-how effective is their use. In: Water Treatment (W. Elshorbagy, R. Chowdhury, eds.). Intech, Rijeka, Croacia, 81-112. https://doi.org/10.5772/50738

Moshoeshoe, M., Nadiye-Tabbiruka, M.S., Obuseng, V. 2017. A review of the chemistry, structure, properties and applications of zeolites. American Journal of Materials Science, 7(5), 196-221.

Ortega-Villar, R., Lizárraga-Mendiola, L., Coronel-Olivares, C., López-León, L.D., Bigurra-Alzati, C.A., Vázquez-Rodríguez, G.A. 2019. Effect of photocatalytic Fe2O3 nanoparticles on urban runoff pollutant removal by permeable concrete. Journal of Environmental Management, 242, 487-495. https://doi.org/10.1016/j.jenvman.2019.04.104

Ortiz-Hernández, J., Lucho-Constantino, C., Lizárraga-Mendiola, L., Beltrán-Hernández, R.I., Coronel-Olivares, C., Vázquez-Rodríguez, G.A. 2016. Quality of urban runoff in wet and dry seasons: a case study in a semi-arid zone. Environmental Science and Pollution Research, 23(24), 25156-25168. https://doi.org/10.1007/s11356-016-7547-7

Parris, K. 2011. Impact of agriculture on water pollution in OECD countries: recent trends and future prospects. Water Resources Development, 27(1), 33-52. https://doi.org/10.1080/07900627.2010.531898

Paul, M.J., Meyer, J.L. 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics, 32(1), 333-365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040

Piñón-Colín, T.J., Rodríguez-Jiménez, R., Rogel-Hernández, E., Álvarez-Andrade, A., Wakida, F.T. 2020. Microplastics in stormwater runoff in a semiarid region, Tijuana, Mexico. Science of the Total Environment, 704, 135411. https://doi.org/10.1016/j.scitotenv.2019.135411

Pitcher, S.K., Slade, R.C.T., Ward, N.I. 2004. Heavy metal removal from motorway stormwater using zeolites. Science of the Total Environment, 334, 161-166. https://doi.org/10.1016/j.scitotenv.2004.04.035

Reddy, K.R., Xie, T., Dastgheibi, S. 2014. Removal of heavy metals from urban stormwater runoff using different filter materials. Journal of Environmental Chemical Engineering, 2(1), 282-292. https://doi.org/10.1016/j.jece.2013.12.020

Ripa, M.N., Leone, A., Garnier, M., Porto, A.L. 2006. Agricultural land use and best management practices to control nonpoint water pollution. Environmental Management, 38(2), 253-266. https://doi.org/10.1007/s00267-004-0344-y

Savenije, H.H.G., Hoekstra, A.Y., van der Zaag, P. 2014. Evolving water science in the Anthropocene. Hydrology and Earth System Sciences, 18, 319-332. https://doi.org/10.5194/hess-18-319-2014

Schifter, I., Bosch, P. 1988. La zeolita: Una piedra que hierve. La Ciencia desde México. Fondo de Cultura Económica, México.

Singh, R.P., Fu, D., Fu, D., Juan, H. 2014. Pollutant removal efficiency of vertical sub-surface upward flow constructed wetlands for highway runoff treatment. Arabian Journal for Science and Engineering, 39(5), 3571-3578. https://doi.org/10.1007/s13369-014-1029-3

Stanić, T., Daković, A., Živanović, A., Tomašević-Čanović, M., Dondur, V., Milićević, S. 2009. Adsorption of arsenic (V) by iron (III)-modified natural zeolitic tuff. Environmental Chemistry Letters, 7(2), 161-166. https://doi.org/10.1007/s10311-008-0152-3

USGS. 2020. Mineral commodity summaries 2020. United States Geological Survey, Reston, Virginia, USA. Recuperado el 2 de julio de 2021 de https://doi.org/10.3133/mcs2020

Vergara-Buitrago, P.A. 2018. Infraestructura verde y azul: una mirada a las ciudades. Escenarios: Empresa y Territorio, 7(10), 1-18.

Viman, O.V., Oroian, I., Fleşeriu, A. 2010. Types of water pollution: point source and nonpoint source. Aquaculture, Aquarium, Conservation & Legislation, 3(5), 393-397.

Virta, R. 2011. Zeolites. In: 2009 US Geological Survey Mineral Yearbook. United States Geological Survey, Reston, Virginia, USA. Recuperado el 2 de julio de 2021 de https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineralpubs/zeolites/myb1-2009-zeoli.pdf

Wang, J., Nabi, M.M., Mohanty, S.K., Afrooz, A.N., Cantando, E., Aich, N., Baalousha, M. 2020. Detection and quantification of engineered particles in urban runoff. Chemosphere 248, 126070. https://doi.org/10.1016/j.chemosphere.2020.126070.

Wang, J., Zhao, Y., Yang, L., Tu, N., Xi, G., Fang, X. 2017. Removal of heavy metals from urban stormwater runoff using bioretention media mix. Water, 9(11), 854. https://doi.org/10.3390/w9110854

Wiering, M., Boezeman, D., Crabbé, A. 2020. The Water Framework Directive and Agricultural Diffuse Pollution: Fighting a Running Battle? Water, 12(5), 1447. https://doi.org/10.3390/w12051447

Yang, Y.S., Wang, L. 2010. A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution. Water Resources Management, 24(9), 1819-1843. https://doi.org/10.1007/s11269-009-9526-y

Yi, X., Lin, D., Li, J., Zeng, J., Wang, D., Yang, F. 2020. Ecological treatment technology for agricultural non-point source pollution in remote rural areas of China. Environmental Science and Pollution Research, 1-13. https://doi.org/10.1007/s11356-020-08587-6

Yuna, Z. 2016. Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environmental Engineering Science, 33(7), 443-454. https://doi.org/10.1089/ees.2015.0166

Ziyath, A.M., Mahbub, P., Goonetilleke, A., Adebajo, M.O., Kokot, S., Oloyede, A. 2011. Influence of Physical and Chemical Parameters on the Treatment of Heavy Metals in Polluted Stormwater Using Zeolite-A Review. Journal of Water Resource and Protection, 3(10), 758-767.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record