- -

Uso de zeolitas para el control de fuentes no puntuales de contaminación del agua: revisión

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Uso de zeolitas para el control de fuentes no puntuales de contaminación del agua: revisión

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gallo-González, Anna Karen es_ES
dc.contributor.author Vázquez-Rodríguez, Gabriela Alejandra es_ES
dc.date.accessioned 2021-11-08T10:21:21Z
dc.date.available 2021-11-08T10:21:21Z
dc.date.issued 2021-10-29
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/176567
dc.description.abstract [EN] In the Anthropocene, there are changes in the composition of freshwater due to pollution derived from point and non-point sources. In this work, zeolites, which are materials with the most diverse applications, are presented as an alternative to mitigate the changes mentioned above through the control of non-point sources, emphasizing those of urban origin. To do this, the most common strategies to face the problem represented by these sources of pollution, in particular green and blue infrastructure, are reviewed. Likewise, the characteristics and properties of natural, synthetic, and modified zeolites are detailed, as well as examples of their use in non-point water source control systems. The article concludes with some recommendations and perspectives. es_ES
dc.description.abstract [ES] En el Antropoceno se constatan cambios en la composición del agua dulce debido a la contaminación derivada de fuentes puntuales y no puntuales. En este trabajo se presenta a las zeolitas, que son materiales con las más diversas aplicaciones, como una alternativa de mitigación de los cambios antes referidos mediante el control de fuentes no puntuales, con énfasis en las escorrentías urbanas. Para ello, se revisan las estrategias más comunes para enfrentar el problema que representan estas fuentes de contaminación, en particular la infraestructura verde y azul. Asimismo, se detallan las características y propiedades de las zeolitas naturales, sintéticas y modificadas, así como ejemplos de su empleo en sistemas de control de escorrentías urbanas. El artículo concluye con algunas recomendaciones y perspectivas. es_ES
dc.description.sponsorship Anna Karen Gallo González agradece la beca otorgada por el Consejo Mexicano de Ciencia y Tecnología (CONACYTMéxico) para realizar sus estudios de posgrado. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Ingeniería del agua es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Zeolita es_ES
dc.subject Escorrentía es_ES
dc.subject Contaminación difusa es_ES
dc.subject Calidad del agua es_ES
dc.subject Infraestructura verde y azul es_ES
dc.subject Zeolite es_ES
dc.subject Runoff es_ES
dc.subject Urbanization es_ES
dc.subject Diffuse pollution es_ES
dc.subject Water quality es_ES
dc.subject Blue-green infrastructure es_ES
dc.title Uso de zeolitas para el control de fuentes no puntuales de contaminación del agua: revisión es_ES
dc.title.alternative Use of zeolites to controlling nonpoint sources of water pollution: a review es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2021.15897
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gallo-González, AK.; Vázquez-Rodríguez, GA. (2021). Uso de zeolitas para el control de fuentes no puntuales de contaminación del agua: revisión. Ingeniería del agua. 25(4):241-255. https://doi.org/10.4995/ia.2021.15897 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2021.15897 es_ES
dc.description.upvformatpinicio 241 es_ES
dc.description.upvformatpfin 255 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\15897 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Al-Anbari, R.H., Wootton, K.P., Durmanic, S., Deletic, A., Fletcher, T.D. 2008. Evaluation of media for the adsorption of stormwater pollutants. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK. es_ES
dc.description.references Álvarez, S., Asci, S., Vorotnikova, E. 2016. Valuing the potential benefits of water quality improvements in watersheds affected by non-point source pollution. Water, 8(4), 112. https://doi.org/10.3390/w8040112 es_ES
dc.description.references Baltrënas, P., Brannvall, E. 2006. Experimental investigation of a filter with natural sorbent charge for runoff cleaning from heavy metals and petroleum products. Journal of Environmental Engineering and Landscape Management, 14(1), 31-36. https://doi.org/10.1080/16486897.2006.9636876 es_ES
dc.description.references Boller, M., Langbein, S., Steiner, M. 2007. Development and full-scale implementation of a new treatment scheme for road runoff. In: Highway and Urban Environment (G.M. Morrison, S. Rauch, eds.). Springer, Dordrecht, 453-463. https://doi.org/10.1007/978-1-4020-6010-6_39 es_ES
dc.description.references Burri, N.M., Weather, R., Moeck, C., Schirmer, M. 2019. A review of threats to groundwater quality in the anthropocene. Science of the Total Environment 684, 136-154. https://doi.org/10.1016/j.scitotenv.2019.05.236 es_ES
dc.description.references Delkash, M., Bakhshayesh, B.E., Kazemian, H. 2015. Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous and Mesoporous Materials, 214, 224-241. https://doi.org/10.1016/j.micromeso.2015.04.039 es_ES
dc.description.references Dietz, M.E. 2007. Low impact development practices: A review of current research and recommendations for future directions. Water, Air, and Soil Pollution, 186(1-4), 351-363. https://doi.org/10.1007/s11270-007-9484-z es_ES
dc.description.references Eckart, K., McPhee, Z., Bolisetti, T. 2017. Performance and implementation of low impact development - A review. Science of the Total Environment, 607, 413-432. https://doi.org/10.1016/j.scitotenv.2017.06.254 es_ES
dc.description.references Fairbairn, D.J., Elliott, S.M., Kiesling, R.L., Schoenfuss, H.L., Ferrey, M.L., Westerhoff, B.M. 2018. Contaminants of emerging concern in urban stormwater: Spatiotemporal patterns and removal by iron-enhanced sand filters (IESFs). Water Research, 145, 332-345. https://doi.org/10.1016/j.watres.2018.08.020 es_ES
dc.description.references Gallo-González, A.K., Vázquez-Rodríguez, G.A. 2020. Recubrimiento de mordenita con magnetita para incrementar su capacidad de descontaminación de agua de escorrentía urbana. Revista Internacional de Desarrollo Regional Sustentable (RINDERESU), 5(2), 878-888. es_ES
dc.description.references González-Olmos, R., Kopinke, F.D., Mackenzie, K., Georgi, A. 2013. Hydrophobic Fe-zeolites for removal of MTBE from water by combination of adsorption and oxidation. Environmental Science and Technology, 47(5), 2353-2360. https://doi.org/10.1021/es303885y es_ES
dc.description.references Guarino-Bertholini, M. 2016. Innovative applications of natural zeolites. Doctoral dissertation, Queensland University of Technology, Australia. es_ES
dc.description.references Haile, T.M., Fuerhacker, M. 2018. Simultaneous adsorption of heavy metals from roadway stormwater runoff using different filter media in column studies. Water, 10(9), 1160. https://doi.org/10.3390/w10091160 es_ES
dc.description.references Hesas, R.H., Baei, M.S., Rostami, H., Gardy, J., Hassanpour, A. 2019. An investigation on the capability of magnetically separable Fe3O4/mordenite zeolite for refinery oily wastewater purification. Journal of Environmental Management, 241, 525-534. https://doi.org/10.1016/j.jenvman.2018.09.005 es_ES
dc.description.references Hough, M. 2004. Cities and natural process: A basis for sustainability, 2nd Edition. Routledge, Londres, UK. https://doi.org/10.4324/9780203643471 es_ES
dc.description.references IZA. 2017. Zeolite Database. International Zeolite Association. Recuperado el 2 de julio de 2021 de http://www.iza-structure.org/databases/. es_ES
dc.description.references Jiménez-Castañeda, M.E., Medina, D.I. 2017. Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water, 9(4), 235. https://doi.org/10.3390/w9040235 es_ES
dc.description.references Kaushal, S.S., Likens, G.E., Pace, M.L., Haq, S., Wood, K.L., Galella, J.G., Morel, C., Doody, T.R., Wessel, B., Kortelainen, P., Räike, A., Skinner, V., Utz, R., Jaworski, N. 2019. Novel 'chemical cocktails' in inland waters are a consequence of the freshwater salinization syndrome. Philosophical Transactions of the Royal Society B, 374(1764), 20180017. https://doi.org/10.1098/rstb.2018.0017 es_ES
dc.description.references Kim, L.H., Kang, H.M., Bae, W. 2010. Treatment of particulates and metals from highway stormwater runoff using zeolite filtration. Desalination and Water Treatment, 19(1-3), 97-104. https://doi.org/10.5004/dwt.2010.1901 es_ES
dc.description.references Król, M. 2020. Natural vs. Synthetic Zeolites. Crystals, 10(7), 622. https://doi.org/10.3390/cryst10070622 es_ES
dc.description.references Krstić, V. 2021. Role of zeolite adsorbent in water treatment. In: Handbook of Nanomaterials for Wastewater Treatment (B. Bhanvase, S. Sonawane, V. Pawade, A. Pandit, eds.). Elsevier, Amsterdam, 417-481. https://doi.org/10.1016/B978-0-12-821496-1.00024-6 es_ES
dc.description.references Li, Y., McCarthy, D.T., Deletic, A. 2016. Escherichia coli removal in copper-zeolite-integrated stormwater biofilters: effect of vegetation, operational time, intermittent drying weather. Ecological Engineering, 90, 234-243. es_ES
dc.description.references https://doi.org/10.1016/j.ecoleng.2016.01.066 es_ES
dc.description.references Li, Y.L., McCarthy, D.T., Deletic, A. 2014. Stable copper-zeolite filter media for bacteria removal in stormwater. Journal of Hazardous Materials, 273, 222-230. https://doi.org/10.1016/j.jhazmat.2014.03.036 es_ES
dc.description.references Luo, H., Guan, L., Jing, Z., Zhang, Z., Tao, M., Wang, Y., Chen, C. 2020. Removing nitrogen and phosphorus simultaneously in stormwater runoff using permeable asphalt pavement system with a zeolite-regulated reservoir. Journal of Water Reuse and Desalination, 10(2), 106-119. https://doi.org/10.2166/wrd.2020.057 es_ES
dc.description.references Lv, G., Li, Z., Jiang, W.T., Ackley, C., Fenske, N., Demarco, N. 2014. Removal of Cr(VI) from water using Fe(II)-modified natural zeolite. Chemical Engineering Research and Design, 92(2), 384-390. https://doi.org/10.1016/j.cherd.2013.08.003 es_ES
dc.description.references Mandelker, D.R. 1989. Controlling nonpoint source water pollution: Can it be done? Chicago-Kent Law Review, 65, 479. Recuperado el 2 de julio de 2021 de https://scholarship.kentlaw.iit.edu/cklawreview/vol65/iss2/9 es_ES
dc.description.references Margeta, K., Logar, N.Z., Šiljeg, M., Farkaš, A. 2013. Natural zeolites in water treatment-how effective is their use. In: Water Treatment (W. Elshorbagy, R. Chowdhury, eds.). Intech, Rijeka, Croacia, 81-112. https://doi.org/10.5772/50738 es_ES
dc.description.references Moshoeshoe, M., Nadiye-Tabbiruka, M.S., Obuseng, V. 2017. A review of the chemistry, structure, properties and applications of zeolites. American Journal of Materials Science, 7(5), 196-221. es_ES
dc.description.references Ortega-Villar, R., Lizárraga-Mendiola, L., Coronel-Olivares, C., López-León, L.D., Bigurra-Alzati, C.A., Vázquez-Rodríguez, G.A. 2019. Effect of photocatalytic Fe2O3 nanoparticles on urban runoff pollutant removal by permeable concrete. Journal of Environmental Management, 242, 487-495. https://doi.org/10.1016/j.jenvman.2019.04.104 es_ES
dc.description.references Ortiz-Hernández, J., Lucho-Constantino, C., Lizárraga-Mendiola, L., Beltrán-Hernández, R.I., Coronel-Olivares, C., Vázquez-Rodríguez, G.A. 2016. Quality of urban runoff in wet and dry seasons: a case study in a semi-arid zone. Environmental Science and Pollution Research, 23(24), 25156-25168. https://doi.org/10.1007/s11356-016-7547-7 es_ES
dc.description.references Parris, K. 2011. Impact of agriculture on water pollution in OECD countries: recent trends and future prospects. Water Resources Development, 27(1), 33-52. https://doi.org/10.1080/07900627.2010.531898 es_ES
dc.description.references Paul, M.J., Meyer, J.L. 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics, 32(1), 333-365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040 es_ES
dc.description.references Piñón-Colín, T.J., Rodríguez-Jiménez, R., Rogel-Hernández, E., Álvarez-Andrade, A., Wakida, F.T. 2020. Microplastics in stormwater runoff in a semiarid region, Tijuana, Mexico. Science of the Total Environment, 704, 135411. https://doi.org/10.1016/j.scitotenv.2019.135411 es_ES
dc.description.references Pitcher, S.K., Slade, R.C.T., Ward, N.I. 2004. Heavy metal removal from motorway stormwater using zeolites. Science of the Total Environment, 334, 161-166. https://doi.org/10.1016/j.scitotenv.2004.04.035 es_ES
dc.description.references Reddy, K.R., Xie, T., Dastgheibi, S. 2014. Removal of heavy metals from urban stormwater runoff using different filter materials. Journal of Environmental Chemical Engineering, 2(1), 282-292. https://doi.org/10.1016/j.jece.2013.12.020 es_ES
dc.description.references Ripa, M.N., Leone, A., Garnier, M., Porto, A.L. 2006. Agricultural land use and best management practices to control nonpoint water pollution. Environmental Management, 38(2), 253-266. https://doi.org/10.1007/s00267-004-0344-y es_ES
dc.description.references Savenije, H.H.G., Hoekstra, A.Y., van der Zaag, P. 2014. Evolving water science in the Anthropocene. Hydrology and Earth System Sciences, 18, 319-332. https://doi.org/10.5194/hess-18-319-2014 es_ES
dc.description.references Schifter, I., Bosch, P. 1988. La zeolita: Una piedra que hierve. La Ciencia desde México. Fondo de Cultura Económica, México. es_ES
dc.description.references Singh, R.P., Fu, D., Fu, D., Juan, H. 2014. Pollutant removal efficiency of vertical sub-surface upward flow constructed wetlands for highway runoff treatment. Arabian Journal for Science and Engineering, 39(5), 3571-3578. https://doi.org/10.1007/s13369-014-1029-3 es_ES
dc.description.references Stanić, T., Daković, A., Živanović, A., Tomašević-Čanović, M., Dondur, V., Milićević, S. 2009. Adsorption of arsenic (V) by iron (III)-modified natural zeolitic tuff. Environmental Chemistry Letters, 7(2), 161-166. https://doi.org/10.1007/s10311-008-0152-3 es_ES
dc.description.references USGS. 2020. Mineral commodity summaries 2020. United States Geological Survey, Reston, Virginia, USA. Recuperado el 2 de julio de 2021 de https://doi.org/10.3133/mcs2020 es_ES
dc.description.references Vergara-Buitrago, P.A. 2018. Infraestructura verde y azul: una mirada a las ciudades. Escenarios: Empresa y Territorio, 7(10), 1-18. es_ES
dc.description.references Viman, O.V., Oroian, I., Fleşeriu, A. 2010. Types of water pollution: point source and nonpoint source. Aquaculture, Aquarium, Conservation & Legislation, 3(5), 393-397. es_ES
dc.description.references Virta, R. 2011. Zeolites. In: 2009 US Geological Survey Mineral Yearbook. United States Geological Survey, Reston, Virginia, USA. Recuperado el 2 de julio de 2021 de https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineralpubs/zeolites/myb1-2009-zeoli.pdf es_ES
dc.description.references Wang, J., Nabi, M.M., Mohanty, S.K., Afrooz, A.N., Cantando, E., Aich, N., Baalousha, M. 2020. Detection and quantification of engineered particles in urban runoff. Chemosphere 248, 126070. https://doi.org/10.1016/j.chemosphere.2020.126070. es_ES
dc.description.references Wang, J., Zhao, Y., Yang, L., Tu, N., Xi, G., Fang, X. 2017. Removal of heavy metals from urban stormwater runoff using bioretention media mix. Water, 9(11), 854. https://doi.org/10.3390/w9110854 es_ES
dc.description.references Wiering, M., Boezeman, D., Crabbé, A. 2020. The Water Framework Directive and Agricultural Diffuse Pollution: Fighting a Running Battle? Water, 12(5), 1447. https://doi.org/10.3390/w12051447 es_ES
dc.description.references Yang, Y.S., Wang, L. 2010. A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution. Water Resources Management, 24(9), 1819-1843. https://doi.org/10.1007/s11269-009-9526-y es_ES
dc.description.references Yi, X., Lin, D., Li, J., Zeng, J., Wang, D., Yang, F. 2020. Ecological treatment technology for agricultural non-point source pollution in remote rural areas of China. Environmental Science and Pollution Research, 1-13. https://doi.org/10.1007/s11356-020-08587-6 es_ES
dc.description.references Yuna, Z. 2016. Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environmental Engineering Science, 33(7), 443-454. https://doi.org/10.1089/ees.2015.0166 es_ES
dc.description.references Ziyath, A.M., Mahbub, P., Goonetilleke, A., Adebajo, M.O., Kokot, S., Oloyede, A. 2011. Influence of Physical and Chemical Parameters on the Treatment of Heavy Metals in Polluted Stormwater Using Zeolite-A Review. Journal of Water Resource and Protection, 3(10), 758-767. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem