Mostrar el registro sencillo del ítem
dc.contributor.author | Gallo-González, Anna Karen | es_ES |
dc.contributor.author | Vázquez-Rodríguez, Gabriela Alejandra | es_ES |
dc.date.accessioned | 2021-11-08T10:21:21Z | |
dc.date.available | 2021-11-08T10:21:21Z | |
dc.date.issued | 2021-10-29 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/176567 | |
dc.description.abstract | [EN] In the Anthropocene, there are changes in the composition of freshwater due to pollution derived from point and non-point sources. In this work, zeolites, which are materials with the most diverse applications, are presented as an alternative to mitigate the changes mentioned above through the control of non-point sources, emphasizing those of urban origin. To do this, the most common strategies to face the problem represented by these sources of pollution, in particular green and blue infrastructure, are reviewed. Likewise, the characteristics and properties of natural, synthetic, and modified zeolites are detailed, as well as examples of their use in non-point water source control systems. The article concludes with some recommendations and perspectives. | es_ES |
dc.description.abstract | [ES] En el Antropoceno se constatan cambios en la composición del agua dulce debido a la contaminación derivada de fuentes puntuales y no puntuales. En este trabajo se presenta a las zeolitas, que son materiales con las más diversas aplicaciones, como una alternativa de mitigación de los cambios antes referidos mediante el control de fuentes no puntuales, con énfasis en las escorrentías urbanas. Para ello, se revisan las estrategias más comunes para enfrentar el problema que representan estas fuentes de contaminación, en particular la infraestructura verde y azul. Asimismo, se detallan las características y propiedades de las zeolitas naturales, sintéticas y modificadas, así como ejemplos de su empleo en sistemas de control de escorrentías urbanas. El artículo concluye con algunas recomendaciones y perspectivas. | es_ES |
dc.description.sponsorship | Anna Karen Gallo González agradece la beca otorgada por el Consejo Mexicano de Ciencia y Tecnología (CONACYTMéxico) para realizar sus estudios de posgrado. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Zeolita | es_ES |
dc.subject | Escorrentía | es_ES |
dc.subject | Contaminación difusa | es_ES |
dc.subject | Calidad del agua | es_ES |
dc.subject | Infraestructura verde y azul | es_ES |
dc.subject | Zeolite | es_ES |
dc.subject | Runoff | es_ES |
dc.subject | Urbanization | es_ES |
dc.subject | Diffuse pollution | es_ES |
dc.subject | Water quality | es_ES |
dc.subject | Blue-green infrastructure | es_ES |
dc.title | Uso de zeolitas para el control de fuentes no puntuales de contaminación del agua: revisión | es_ES |
dc.title.alternative | Use of zeolites to controlling nonpoint sources of water pollution: a review | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2021.15897 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Gallo-González, AK.; Vázquez-Rodríguez, GA. (2021). Uso de zeolitas para el control de fuentes no puntuales de contaminación del agua: revisión. Ingeniería del agua. 25(4):241-255. https://doi.org/10.4995/ia.2021.15897 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2021.15897 | es_ES |
dc.description.upvformatpinicio | 241 | es_ES |
dc.description.upvformatpfin | 255 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\15897 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | Al-Anbari, R.H., Wootton, K.P., Durmanic, S., Deletic, A., Fletcher, T.D. 2008. Evaluation of media for the adsorption of stormwater pollutants. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK. | es_ES |
dc.description.references | Álvarez, S., Asci, S., Vorotnikova, E. 2016. Valuing the potential benefits of water quality improvements in watersheds affected by non-point source pollution. Water, 8(4), 112. https://doi.org/10.3390/w8040112 | es_ES |
dc.description.references | Baltrënas, P., Brannvall, E. 2006. Experimental investigation of a filter with natural sorbent charge for runoff cleaning from heavy metals and petroleum products. Journal of Environmental Engineering and Landscape Management, 14(1), 31-36. https://doi.org/10.1080/16486897.2006.9636876 | es_ES |
dc.description.references | Boller, M., Langbein, S., Steiner, M. 2007. Development and full-scale implementation of a new treatment scheme for road runoff. In: Highway and Urban Environment (G.M. Morrison, S. Rauch, eds.). Springer, Dordrecht, 453-463. https://doi.org/10.1007/978-1-4020-6010-6_39 | es_ES |
dc.description.references | Burri, N.M., Weather, R., Moeck, C., Schirmer, M. 2019. A review of threats to groundwater quality in the anthropocene. Science of the Total Environment 684, 136-154. https://doi.org/10.1016/j.scitotenv.2019.05.236 | es_ES |
dc.description.references | Delkash, M., Bakhshayesh, B.E., Kazemian, H. 2015. Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous and Mesoporous Materials, 214, 224-241. https://doi.org/10.1016/j.micromeso.2015.04.039 | es_ES |
dc.description.references | Dietz, M.E. 2007. Low impact development practices: A review of current research and recommendations for future directions. Water, Air, and Soil Pollution, 186(1-4), 351-363. https://doi.org/10.1007/s11270-007-9484-z | es_ES |
dc.description.references | Eckart, K., McPhee, Z., Bolisetti, T. 2017. Performance and implementation of low impact development - A review. Science of the Total Environment, 607, 413-432. https://doi.org/10.1016/j.scitotenv.2017.06.254 | es_ES |
dc.description.references | Fairbairn, D.J., Elliott, S.M., Kiesling, R.L., Schoenfuss, H.L., Ferrey, M.L., Westerhoff, B.M. 2018. Contaminants of emerging concern in urban stormwater: Spatiotemporal patterns and removal by iron-enhanced sand filters (IESFs). Water Research, 145, 332-345. https://doi.org/10.1016/j.watres.2018.08.020 | es_ES |
dc.description.references | Gallo-González, A.K., Vázquez-Rodríguez, G.A. 2020. Recubrimiento de mordenita con magnetita para incrementar su capacidad de descontaminación de agua de escorrentía urbana. Revista Internacional de Desarrollo Regional Sustentable (RINDERESU), 5(2), 878-888. | es_ES |
dc.description.references | González-Olmos, R., Kopinke, F.D., Mackenzie, K., Georgi, A. 2013. Hydrophobic Fe-zeolites for removal of MTBE from water by combination of adsorption and oxidation. Environmental Science and Technology, 47(5), 2353-2360. https://doi.org/10.1021/es303885y | es_ES |
dc.description.references | Guarino-Bertholini, M. 2016. Innovative applications of natural zeolites. Doctoral dissertation, Queensland University of Technology, Australia. | es_ES |
dc.description.references | Haile, T.M., Fuerhacker, M. 2018. Simultaneous adsorption of heavy metals from roadway stormwater runoff using different filter media in column studies. Water, 10(9), 1160. https://doi.org/10.3390/w10091160 | es_ES |
dc.description.references | Hesas, R.H., Baei, M.S., Rostami, H., Gardy, J., Hassanpour, A. 2019. An investigation on the capability of magnetically separable Fe3O4/mordenite zeolite for refinery oily wastewater purification. Journal of Environmental Management, 241, 525-534. https://doi.org/10.1016/j.jenvman.2018.09.005 | es_ES |
dc.description.references | Hough, M. 2004. Cities and natural process: A basis for sustainability, 2nd Edition. Routledge, Londres, UK. https://doi.org/10.4324/9780203643471 | es_ES |
dc.description.references | IZA. 2017. Zeolite Database. International Zeolite Association. Recuperado el 2 de julio de 2021 de http://www.iza-structure.org/databases/. | es_ES |
dc.description.references | Jiménez-Castañeda, M.E., Medina, D.I. 2017. Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water, 9(4), 235. https://doi.org/10.3390/w9040235 | es_ES |
dc.description.references | Kaushal, S.S., Likens, G.E., Pace, M.L., Haq, S., Wood, K.L., Galella, J.G., Morel, C., Doody, T.R., Wessel, B., Kortelainen, P., Räike, A., Skinner, V., Utz, R., Jaworski, N. 2019. Novel 'chemical cocktails' in inland waters are a consequence of the freshwater salinization syndrome. Philosophical Transactions of the Royal Society B, 374(1764), 20180017. https://doi.org/10.1098/rstb.2018.0017 | es_ES |
dc.description.references | Kim, L.H., Kang, H.M., Bae, W. 2010. Treatment of particulates and metals from highway stormwater runoff using zeolite filtration. Desalination and Water Treatment, 19(1-3), 97-104. https://doi.org/10.5004/dwt.2010.1901 | es_ES |
dc.description.references | Król, M. 2020. Natural vs. Synthetic Zeolites. Crystals, 10(7), 622. https://doi.org/10.3390/cryst10070622 | es_ES |
dc.description.references | Krstić, V. 2021. Role of zeolite adsorbent in water treatment. In: Handbook of Nanomaterials for Wastewater Treatment (B. Bhanvase, S. Sonawane, V. Pawade, A. Pandit, eds.). Elsevier, Amsterdam, 417-481. https://doi.org/10.1016/B978-0-12-821496-1.00024-6 | es_ES |
dc.description.references | Li, Y., McCarthy, D.T., Deletic, A. 2016. Escherichia coli removal in copper-zeolite-integrated stormwater biofilters: effect of vegetation, operational time, intermittent drying weather. Ecological Engineering, 90, 234-243. | es_ES |
dc.description.references | https://doi.org/10.1016/j.ecoleng.2016.01.066 | es_ES |
dc.description.references | Li, Y.L., McCarthy, D.T., Deletic, A. 2014. Stable copper-zeolite filter media for bacteria removal in stormwater. Journal of Hazardous Materials, 273, 222-230. https://doi.org/10.1016/j.jhazmat.2014.03.036 | es_ES |
dc.description.references | Luo, H., Guan, L., Jing, Z., Zhang, Z., Tao, M., Wang, Y., Chen, C. 2020. Removing nitrogen and phosphorus simultaneously in stormwater runoff using permeable asphalt pavement system with a zeolite-regulated reservoir. Journal of Water Reuse and Desalination, 10(2), 106-119. https://doi.org/10.2166/wrd.2020.057 | es_ES |
dc.description.references | Lv, G., Li, Z., Jiang, W.T., Ackley, C., Fenske, N., Demarco, N. 2014. Removal of Cr(VI) from water using Fe(II)-modified natural zeolite. Chemical Engineering Research and Design, 92(2), 384-390. https://doi.org/10.1016/j.cherd.2013.08.003 | es_ES |
dc.description.references | Mandelker, D.R. 1989. Controlling nonpoint source water pollution: Can it be done? Chicago-Kent Law Review, 65, 479. Recuperado el 2 de julio de 2021 de https://scholarship.kentlaw.iit.edu/cklawreview/vol65/iss2/9 | es_ES |
dc.description.references | Margeta, K., Logar, N.Z., Šiljeg, M., Farkaš, A. 2013. Natural zeolites in water treatment-how effective is their use. In: Water Treatment (W. Elshorbagy, R. Chowdhury, eds.). Intech, Rijeka, Croacia, 81-112. https://doi.org/10.5772/50738 | es_ES |
dc.description.references | Moshoeshoe, M., Nadiye-Tabbiruka, M.S., Obuseng, V. 2017. A review of the chemistry, structure, properties and applications of zeolites. American Journal of Materials Science, 7(5), 196-221. | es_ES |
dc.description.references | Ortega-Villar, R., Lizárraga-Mendiola, L., Coronel-Olivares, C., López-León, L.D., Bigurra-Alzati, C.A., Vázquez-Rodríguez, G.A. 2019. Effect of photocatalytic Fe2O3 nanoparticles on urban runoff pollutant removal by permeable concrete. Journal of Environmental Management, 242, 487-495. https://doi.org/10.1016/j.jenvman.2019.04.104 | es_ES |
dc.description.references | Ortiz-Hernández, J., Lucho-Constantino, C., Lizárraga-Mendiola, L., Beltrán-Hernández, R.I., Coronel-Olivares, C., Vázquez-Rodríguez, G.A. 2016. Quality of urban runoff in wet and dry seasons: a case study in a semi-arid zone. Environmental Science and Pollution Research, 23(24), 25156-25168. https://doi.org/10.1007/s11356-016-7547-7 | es_ES |
dc.description.references | Parris, K. 2011. Impact of agriculture on water pollution in OECD countries: recent trends and future prospects. Water Resources Development, 27(1), 33-52. https://doi.org/10.1080/07900627.2010.531898 | es_ES |
dc.description.references | Paul, M.J., Meyer, J.L. 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics, 32(1), 333-365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040 | es_ES |
dc.description.references | Piñón-Colín, T.J., Rodríguez-Jiménez, R., Rogel-Hernández, E., Álvarez-Andrade, A., Wakida, F.T. 2020. Microplastics in stormwater runoff in a semiarid region, Tijuana, Mexico. Science of the Total Environment, 704, 135411. https://doi.org/10.1016/j.scitotenv.2019.135411 | es_ES |
dc.description.references | Pitcher, S.K., Slade, R.C.T., Ward, N.I. 2004. Heavy metal removal from motorway stormwater using zeolites. Science of the Total Environment, 334, 161-166. https://doi.org/10.1016/j.scitotenv.2004.04.035 | es_ES |
dc.description.references | Reddy, K.R., Xie, T., Dastgheibi, S. 2014. Removal of heavy metals from urban stormwater runoff using different filter materials. Journal of Environmental Chemical Engineering, 2(1), 282-292. https://doi.org/10.1016/j.jece.2013.12.020 | es_ES |
dc.description.references | Ripa, M.N., Leone, A., Garnier, M., Porto, A.L. 2006. Agricultural land use and best management practices to control nonpoint water pollution. Environmental Management, 38(2), 253-266. https://doi.org/10.1007/s00267-004-0344-y | es_ES |
dc.description.references | Savenije, H.H.G., Hoekstra, A.Y., van der Zaag, P. 2014. Evolving water science in the Anthropocene. Hydrology and Earth System Sciences, 18, 319-332. https://doi.org/10.5194/hess-18-319-2014 | es_ES |
dc.description.references | Schifter, I., Bosch, P. 1988. La zeolita: Una piedra que hierve. La Ciencia desde México. Fondo de Cultura Económica, México. | es_ES |
dc.description.references | Singh, R.P., Fu, D., Fu, D., Juan, H. 2014. Pollutant removal efficiency of vertical sub-surface upward flow constructed wetlands for highway runoff treatment. Arabian Journal for Science and Engineering, 39(5), 3571-3578. https://doi.org/10.1007/s13369-014-1029-3 | es_ES |
dc.description.references | Stanić, T., Daković, A., Živanović, A., Tomašević-Čanović, M., Dondur, V., Milićević, S. 2009. Adsorption of arsenic (V) by iron (III)-modified natural zeolitic tuff. Environmental Chemistry Letters, 7(2), 161-166. https://doi.org/10.1007/s10311-008-0152-3 | es_ES |
dc.description.references | USGS. 2020. Mineral commodity summaries 2020. United States Geological Survey, Reston, Virginia, USA. Recuperado el 2 de julio de 2021 de https://doi.org/10.3133/mcs2020 | es_ES |
dc.description.references | Vergara-Buitrago, P.A. 2018. Infraestructura verde y azul: una mirada a las ciudades. Escenarios: Empresa y Territorio, 7(10), 1-18. | es_ES |
dc.description.references | Viman, O.V., Oroian, I., Fleşeriu, A. 2010. Types of water pollution: point source and nonpoint source. Aquaculture, Aquarium, Conservation & Legislation, 3(5), 393-397. | es_ES |
dc.description.references | Virta, R. 2011. Zeolites. In: 2009 US Geological Survey Mineral Yearbook. United States Geological Survey, Reston, Virginia, USA. Recuperado el 2 de julio de 2021 de https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineralpubs/zeolites/myb1-2009-zeoli.pdf | es_ES |
dc.description.references | Wang, J., Nabi, M.M., Mohanty, S.K., Afrooz, A.N., Cantando, E., Aich, N., Baalousha, M. 2020. Detection and quantification of engineered particles in urban runoff. Chemosphere 248, 126070. https://doi.org/10.1016/j.chemosphere.2020.126070. | es_ES |
dc.description.references | Wang, J., Zhao, Y., Yang, L., Tu, N., Xi, G., Fang, X. 2017. Removal of heavy metals from urban stormwater runoff using bioretention media mix. Water, 9(11), 854. https://doi.org/10.3390/w9110854 | es_ES |
dc.description.references | Wiering, M., Boezeman, D., Crabbé, A. 2020. The Water Framework Directive and Agricultural Diffuse Pollution: Fighting a Running Battle? Water, 12(5), 1447. https://doi.org/10.3390/w12051447 | es_ES |
dc.description.references | Yang, Y.S., Wang, L. 2010. A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution. Water Resources Management, 24(9), 1819-1843. https://doi.org/10.1007/s11269-009-9526-y | es_ES |
dc.description.references | Yi, X., Lin, D., Li, J., Zeng, J., Wang, D., Yang, F. 2020. Ecological treatment technology for agricultural non-point source pollution in remote rural areas of China. Environmental Science and Pollution Research, 1-13. https://doi.org/10.1007/s11356-020-08587-6 | es_ES |
dc.description.references | Yuna, Z. 2016. Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environmental Engineering Science, 33(7), 443-454. https://doi.org/10.1089/ees.2015.0166 | es_ES |
dc.description.references | Ziyath, A.M., Mahbub, P., Goonetilleke, A., Adebajo, M.O., Kokot, S., Oloyede, A. 2011. Influence of Physical and Chemical Parameters on the Treatment of Heavy Metals in Polluted Stormwater Using Zeolite-A Review. Journal of Water Resource and Protection, 3(10), 758-767. | es_ES |