Sánchez, MG.; Fajardo-Delgado, D.; Vidal-Gimeno, V.; Verdú Martín, GJ. (2020). A hybrid genetic algorithm to reduce the radiation dose in CR images. Radiation Physics and Chemistry. 167. https://doi.org/10.1016/j.radphyschem.2019.04.025
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176616
Title:
|
A hybrid genetic algorithm to reduce the radiation dose in CR images
|
Author:
|
Sánchez, M. G.
Fajardo-Delgado, D.
Vidal-Gimeno, Vicente-Emilio
Verdú Martín, Gumersindo Jesús
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
|
Issued date:
|
|
Abstract:
|
[EN] The quality of computed radiography (CR) images typically relate to patient radiation exposure. The lower the X-ray dose exposure, the higher the level of inherent noise in the CR images. In this work, we address the ...[+]
[EN] The quality of computed radiography (CR) images typically relate to patient radiation exposure. The lower the X-ray dose exposure, the higher the level of inherent noise in the CR images. In this work, we address the noise reduction problem by using an estimation of the standard deviation in CR images as an objective function to minimize. We propose a hybrid genetic algorithm for this aim, which produces improved versions of CR images. We also applied an edge-detection method based on the Canny algorithm to preserve the edges of the original CR images. We executed our proposed algorithm for CR images obtained under different radiation exposures. Experimental results show that our solution improves lower radiation CR images reaching a quality as similar to those with higher radiation doses.
[-]
|
Subjects:
|
Computed radiography
,
Radiation dose
,
Evolutionary algorithms
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Radiation Physics and Chemistry. (issn:
0969-806X
)
|
DOI:
|
10.1016/j.radphyschem.2019.04.025
|
Publisher:
|
Elsevier
|
Publisher version:
|
https://doi.org/10.1016/j.radphyschem.2019.04.025
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C54/ES/TECNICAS PARA LA ACELERACION Y MEJORA DE APLICACIONES MULTIMEDIA Y HPC/
info:eu-repo/grantAgreement/TECNM//511-6%2F17-8931 (ITCGUZ-CA-7)/
info:eu-repo/grantAgreement/MINECO//TIN2015-66972-C5-4-R/ES/TECNICAS PARA LA MEJORA DE LAS APLICACIONES MULTIMEDIA Y COMPUTACION MATRICIAL/
info:eu-repo/grantAgreement/TECNM//5826.19-P/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2018%2F035//BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/
|
Thanks:
|
This research has been supported by the Universitat Politecnica de Valencia, Generalitat Valenciana, under PROMETEO/2018/035 co-financed by FEDER funds (Spain). M. Sanchez and D. Fajardo-Delgado gratefully acknowledge the ...[+]
This research has been supported by the Universitat Politecnica de Valencia, Generalitat Valenciana, under PROMETEO/2018/035 co-financed by FEDER funds (Spain). M. Sanchez and D. Fajardo-Delgado gratefully acknowledge the financial support from PRODEP and TecNM (Mexico) under grants 511-6/17-8931 (ITCGUZ-CA-7) and 5826.19-P, respectively.
[-]
|
Type:
|
Artículo
|