Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez, M. G. | es_ES |
dc.contributor.author | Fajardo-Delgado, D. | es_ES |
dc.contributor.author | Vidal-Gimeno, Vicente-Emilio | es_ES |
dc.contributor.author | Verdú Martín, Gumersindo Jesús | es_ES |
dc.date.accessioned | 2021-11-09T04:34:11Z | |
dc.date.available | 2021-11-09T04:34:11Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.issn | 0969-806X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176616 | |
dc.description.abstract | [EN] The quality of computed radiography (CR) images typically relate to patient radiation exposure. The lower the X-ray dose exposure, the higher the level of inherent noise in the CR images. In this work, we address the noise reduction problem by using an estimation of the standard deviation in CR images as an objective function to minimize. We propose a hybrid genetic algorithm for this aim, which produces improved versions of CR images. We also applied an edge-detection method based on the Canny algorithm to preserve the edges of the original CR images. We executed our proposed algorithm for CR images obtained under different radiation exposures. Experimental results show that our solution improves lower radiation CR images reaching a quality as similar to those with higher radiation doses. | es_ES |
dc.description.sponsorship | This research has been supported by the Universitat Politecnica de Valencia, Generalitat Valenciana, under PROMETEO/2018/035 co-financed by FEDER funds (Spain). M. Sanchez and D. Fajardo-Delgado gratefully acknowledge the financial support from PRODEP and TecNM (Mexico) under grants 511-6/17-8931 (ITCGUZ-CA-7) and 5826.19-P, respectively. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Radiation Physics and Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Computed radiography | es_ES |
dc.subject | Radiation dose | es_ES |
dc.subject | Evolutionary algorithms | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | A hybrid genetic algorithm to reduce the radiation dose in CR images | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.radphyschem.2019.04.025 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C54/ES/TECNICAS PARA LA ACELERACION Y MEJORA DE APLICACIONES MULTIMEDIA Y HPC/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/TECNM//511-6%2F17-8931 (ITCGUZ-CA-7)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-66972-C5-4-R/ES/TECNICAS PARA LA MEJORA DE LAS APLICACIONES MULTIMEDIA Y COMPUTACION MATRICIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/TECNM//5826.19-P/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2018%2F035//BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Sánchez, MG.; Fajardo-Delgado, D.; Vidal-Gimeno, V.; Verdú Martín, GJ. (2020). A hybrid genetic algorithm to reduce the radiation dose in CR images. Radiation Physics and Chemistry. 167. https://doi.org/10.1016/j.radphyschem.2019.04.025 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.radphyschem.2019.04.025 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 167 | es_ES |
dc.relation.pasarela | S\411524 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | Tecnológico Nacional de México | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |