- -

Control of anomalous diffusion of a Bose polaron

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control of anomalous diffusion of a Bose polaron

Mostrar el registro completo del ítem

Charalambous, C.; Garcia March, MA.; Munoz-Gil, G.; Grzybowski, PR.; Lewenstein, M. (2020). Control of anomalous diffusion of a Bose polaron. Quantum. 4:232/1-232/18. https://doi.org/10.22331/q-2020-02-20-232

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176619

Ficheros en el ítem

Metadatos del ítem

Título: Control of anomalous diffusion of a Bose polaron
Autor: Charalambous, Christos Garcia March, Miguel Angel Munoz-Gil, Gorka Grzybowski, Przemyslaw Ryszard Lewenstein, Maciej
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We study the diffusive behavior of a Bose polaron immersed in a coherently coupled two-component Bose-Einstein Condensate (BEC). We assume a uniform, one-dimensional BEC. Polaron superdiffuses if it couples in the ...[+]
Palabras clave: Quantum simulators , Quantum engines , Ultracold atoms , Bose Polaron , Open quantum systems
Derechos de uso: Reconocimiento (by)
Fuente:
Quantum. (eissn: 2521-327X )
DOI: 10.22331/q-2020-02-20-232
Editorial:
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Versión del editor: https://doi.org/10.22331/q-2020-02-20-232
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BES-2015-071803/ES/BES-2015-071803/
info:eu-repo/grantAgreement/GC//2017 SGR 1341/
info:eu-repo/grantAgreement/MINECO//FIS-2016-79508/
info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314//Symfonia/
Agradecimientos:
We (M.L. group) acknowledge the Spanish Ministry MINECO (National Plan 15 Grant: FISICATEAMO No. FIS-2016-79508-P, FPI), the Ministry of Education of Spain (FPI Grant BES-2015-071803), EU FEDER, European Social Fund, ...[+]
Tipo: Artículo

References

P. Hänggi and F. Marchesoni. Introduction: 100years of brownian motion. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2): 026101, 2005. 10.1063/1.1895505. URL https://doi.org/10.1063/1.1895505.

I. M. Sokolov and J. Klafter. From diffusion to anomalous diffusion: A century after einstein’s brownian motion. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2): 026103, 2005. 10.1063/1.1860472. URL https://doi.org/10.1063/1.1860472.

H. Scher and E.W. Montroll. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B, 12: 2455–2477, Sep 1975. 10.1103/PhysRevB.12.2455. URL https://link.aps.org/doi/10.1103/PhysRevB.12.2455. [+]
P. Hänggi and F. Marchesoni. Introduction: 100years of brownian motion. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2): 026101, 2005. 10.1063/1.1895505. URL https://doi.org/10.1063/1.1895505.

I. M. Sokolov and J. Klafter. From diffusion to anomalous diffusion: A century after einstein’s brownian motion. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2): 026103, 2005. 10.1063/1.1860472. URL https://doi.org/10.1063/1.1860472.

H. Scher and E.W. Montroll. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B, 12: 2455–2477, Sep 1975. 10.1103/PhysRevB.12.2455. URL https://link.aps.org/doi/10.1103/PhysRevB.12.2455.

A. Bunde and S. Havlin. Fractals in science. Springer-Verlag Berlin Heidelberg, 1994. 10.1007/978-3-662-11777-4.

M J Saxton. Lateral diffusion in an archipelago. single-particle diffusion. Biophys J, 64, 1993. 10.1016/S0006-3495(93)81548-0. URL https://www.ncbi.nlm.nih.gov/pubmed/8369407.

M. J. Saxton. Single-particle tracking: the distribution of diffusion coefficients. Biophys J, 72, 1997. 10.1016/S0006-3495(97)78820-9. URL https://www.ncbi.nlm.nih.gov/pubmed/9083678.

F. Leyvraz, J. Adler, A. Aharony, A. Bunde, A. Coniglio, D.C. Hong, H.E. Stanley, and D. Stauffer. The random normal superconductor mixture in one dimension. Journal of Physics A: Mathematical and General, 19 (17): 3683–3692, dec 1986. 10.1088/0305-4470/19/17/030. URL https://doi.org/10.1088.

S. Hottovy, G. Volpe, and J. Wehr. Noise-induced drift in stochastic differential equations with arbitrary friction and diffusion in the smoluchowski-kramers limit. Journal of Statistical Physics, 146 (4): 762–773, Feb 2012. ISSN 1572-9613. 10.1007/s10955-012-0418-9. URL https://doi.org/10.1007/s10955-012-0418-9.

A.G. Cherstvy and R. Metzler. Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. Phys. Chem. Chem. Phys., 15: 20220–20235, 2013. 10.1039/C3CP53056F. URL http://dx.doi.org/10.1039/C3CP53056F.

A.G. Cherstvy, A.V. Chechkin, and R. Metzler. Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. New Journal of Physics, 15 (8): 083039, aug 2013. 10.1088/1367-2630/15/8/083039. URL https://doi.org/10.1088.

A.G. Cherstvy, A.V. Chechkin, and R. Metzler. Particle invasion, survival, and non-ergodicity in 2d diffusion processes with space-dependent diffusivity. Soft Matter, 10: 1591–1601, 2014. 10.1039/C3SM52846D. URL http://dx.doi.org/10.1039/C3SM52846D.

P. Massignan, C. Manzo, J. A. Torreno-Pina, M. F. García-Parajo, M. Lewenstein, and G. J. Lapeyre. Nonergodic subdiffusion from brownian motion in an inhomogeneous medium. Phys. Rev. Lett., 112: 150603, Apr 2014. 10.1103/PhysRevLett.112.150603. URL https://link.aps.org/doi/10.1103/PhysRevLett.112.150603.

Carlo Manzo, Juan A. Torreno-Pina, Pietro Massignan, Gerald J. Lapeyre, Maciej Lewenstein, and Maria F. Garcia Parajo. Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity. Phys. Rev. X, 5: 011021, Feb 2015. 10.1103/PhysRevX.5.011021. URL https://link.aps.org/doi/10.1103/PhysRevX.5.011021.

C. Charalambous, G. Muñoz Gil, A. Celi, M. F. Garcia-Parajo, M. Lewenstein, C. Manzo, and M. A. García-March. Nonergodic subdiffusion from transient interactions with heterogeneous partners. Phys. Rev. E, 95: 032403, Mar 2017. 10.1103/PhysRevE.95.032403. URL https://link.aps.org/doi/10.1103/PhysRevE.95.032403.

B. Min, T. Li, M. Rosenkranz, and W. Bao. Subdiffusive spreading of a bose-einstein condensate in random potentials. Phys. Rev. A, 86: 053612, Nov 2012. 10.1103/PhysRevA.86.053612. URL https://link.aps.org/doi/10.1103/PhysRevA.86.053612.

G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio. Anderson localization of a non-interacting bose–einstein condensate. Nature, 453, 2008. 10.1038/nature07071. URL https://doi.org/10.1038/nature07071.

F. Jendrzejewski, A. Bernard, K. Müller, P. Cheinet, V. Josse, M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and P. Bouyer. Three-dimensional localization of ultracold atoms in an optical disordered potential. Nature Physics, 8, 2012. 10.1038/nphys2256. URL https://doi.org/10.1038/nphys2256.

L. Sanchez-Palencia and M. Lewenstein. Disordered quantum gases under control. Nature Physics, 6, 2010. 10.1038/nphys1507. URL https://doi.org/10.1038/nphys1507.

G. Modugno. Anderson localization in bose–einstein condensates. Reports on Progress in Physics, 73 (10): 102401, sep 2010. 10.1088/0034-4885/73/10/102401. URL https://doi.org/10.1088.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect. Direct observation of anderson localization of matter waves in a controlled disorder. Nature, 453, 2008. 10.1038/nature07000. URL https://doi.org/10.1038/nature07000.

B. Deissler, M. Zaccanti, G. Roati, C. D’Errico, M. Fattori, M. Modugno, G. Modugno, and M. Inguscio. Delocalization of a disordered bosonic system by repulsive interactions. Nature Physics, 6, 2010. 10.1038/nphys1635. URL https://doi.org/10.1038/nphys1635.

E. Lucioni, B. Deissler, L. Tanzi, G. Roati, M. Zaccanti, M. Modugno, M. Larcher, F. Dalfovo, M. Inguscio, and G. Modugno. Observation of subdiffusion in a disordered interacting system. Phys. Rev. Lett., 106: 230403, Jun 2011. 10.1103/PhysRevLett.106.230403. URL https://link.aps.org/doi/10.1103/PhysRevLett.106.230403.

Stefan Donsa, Harald Hofstätter, Othmar Koch, Joachim Burgdörfer, and Iva Březinová. Long-time expansion of a bose-einstein condensate: Observability of anderson localization. Phys. Rev. A, 96: 043630, Oct 2017. 10.1103/PhysRevA.96.043630. URL https://link.aps.org/doi/10.1103/PhysRevA.96.043630.

D. L. Shepelyansky. Delocalization of quantum chaos by weak nonlinearity. Phys. Rev. Lett., 70: 1787–1790, Mar 1993. 10.1103/PhysRevLett.70.1787. URL https://link.aps.org/doi/10.1103/PhysRevLett.70.1787.

G. Kopidakis, S. Komineas, S. Flach, and S. Aubry. Absence of wave packet diffusion in disordered nonlinear systems. Phys. Rev. Lett., 100: 084103, Feb 2008. 10.1103/PhysRevLett.100.084103. URL https://link.aps.org/doi/10.1103/PhysRevLett.100.084103.

A. S. Pikovsky and D. L. Shepelyansky. Destruction of anderson localization by a weak nonlinearity. Phys. Rev. Lett., 100: 094101, Mar 2008. 10.1103/PhysRevLett.100.094101. URL https://link.aps.org/doi/10.1103/PhysRevLett.100.094101.

S. Flach, D. O. Krimer, and Ch. Skokos. Universal spreading of wave packets in disordered nonlinear systems. Phys. Rev. Lett., 102: 024101, Jan 2009. 10.1103/PhysRevLett.102.024101. URL https://link.aps.org/doi/10.1103/PhysRevLett.102.024101.

Ch. Skokos, D. O. Krimer, S. Komineas, and S. Flach. Delocalization of wave packets in disordered nonlinear chains. Phys. Rev. E, 79: 056211, May 2009. 10.1103/PhysRevE.79.056211. URL https://link.aps.org/doi/10.1103/PhysRevE.79.056211.

Hagar Veksler, Yevgeny Krivolapov, and Shmuel Fishman. Spreading for the generalized nonlinear schrödinger equation with disorder. Phys. Rev. E, 80: 037201, Sep 2009. 10.1103/PhysRevE.80.037201. URL https://link.aps.org/doi/10.1103/PhysRevE.80.037201.

M. Mulansky and A. Pikovsky. Spreading in disordered lattices with different nonlinearities. EPL (Europhysics Letters), 90 (1): 10015, apr 2010. 10.1209/0295-5075/90/10015. URL https://doi.org/10.1209.

T. V. Laptyeva, J. D. Bodyfelt, D. O. Krimer, Ch. Skokos, and S. Flach. The crossover from strong to weak chaos for nonlinear waves in disordered systems. EPL (Europhysics Letters), 91 (3): 30001, aug 2010. 10.1209/0295-5075/91/30001. URL https://doi.org/10.1209.

A. Iomin. Subdiffusion in the nonlinear schrödinger equation with disorder. Phys. Rev. E, 81: 017601, Jan 2010. 10.1103/PhysRevE.81.017601. URL https://link.aps.org/doi/10.1103/PhysRevE.81.017601.

M. Larcher, F. Dalfovo, and M. Modugno. Effects of interaction on the diffusion of atomic matter waves in one-dimensional quasiperiodic potentials. Phys. Rev. A, 80: 053606, Nov 2009. 10.1103/PhysRevA.80.053606. URL https://link.aps.org/doi/10.1103/PhysRevA.80.053606.

L.M. Aycock, H.M. Hurst, D.K. Efimkin, D. Genkina, H.-I. Lu, V.M. Galitski, and I. B. Spielman. Brownian motion of solitons in a bose–einstein condensate. Proceedings of the National Academy of Sciences, 114 (10): 2503–2508, 2017. ISSN 0027-8424. 10.1073/pnas.1615004114. URL https://www.pnas.org/content/114/10/2503.

A. Lampo, S.H. Lim, M.A. García-March, and M. Lewenstein. Bose polaron as an instance of quantum Brownian motion. Quantum, 1: 30, September 2017. ISSN 2521-327X. 10.22331/q-2017-09-27-30. URL https://doi.org/10.22331/q-2017-09-27-30.

A. Lampo, C. Charalambous, M.A. García-March, and M. Lewenstein. Non-markovian polaron dynamics in a trapped bose-einstein condensate. Phys. Rev. A, 98: 063630, Dec 2018. 10.1103/PhysRevA.98.063630. URL https://link.aps.org/doi/10.1103/PhysRevA.98.063630.

C. Charalambous, M.A. Garcia-March, A. Lampo, M. Mehboudi, and M. Lewenstein. Two distinguishable impurities in BEC: squeezing and entanglement of two Bose polarons. SciPost Phys., 6: 10, 2019. 10.21468/SciPostPhys.6.1.010. URL https://scipost.org/10.21468/SciPostPhys.6.1.010.

D.K. Efimkin, J. Hofmann, and V. Galitski. Non-markovian quantum friction of bright solitons in superfluids. Phys. Rev. Lett., 116: 225301, May 2016. 10.1103/PhysRevLett.116.225301. URL https://link.aps.org/doi/10.1103/PhysRevLett.116.225301.

H.M. Hurst, D.K. Efimkin, I. B. Spielman, and V. Galitski. Kinetic theory of dark solitons with tunable friction. Phys. Rev. A, 95: 053604, May 2017. 10.1103/PhysRevA.95.053604. URL https://link.aps.org/doi/10.1103/PhysRevA.95.053604.

A. Cem Keser and V. Galitski. Analogue stochastic gravity in strongly-interacting bose–einstein condensates. Annals of Physics, 395: 84 – 111, 2018. ISSN 0003-4916. https://doi.org/10.1016/j.aop.2018.05.009. URL http://www.sciencedirect.com/science/article/pii/S0003491618301453.

Julius Bonart and Leticia F. Cugliandolo. From nonequilibrium quantum brownian motion to impurity dynamics in one-dimensional quantum liquids. Phys. Rev. A, 86: 023636, Aug 2012. 10.1103/PhysRevA.86.023636. URL https://link.aps.org/doi/10.1103/PhysRevA.86.023636.

X.-D. Bai and J.-K. Xue. Subdiffusion of dipolar gas in one-dimensional quasiperiodic potentials. Chinese Physics Letters, 32 (1): 010302, jan 2015. 10.1088/0256-307x/32/1/010302. URL https://doi.org/10.1088.

K.-T. Xi, J. Li, and D.-N. Shi. Localization of a two-component bose–einstein condensate in a two-dimensional bichromatic optical lattice. Physica B: Condensed Matter, 436: 149 – 156, 2014. ISSN 0921-4526. https://doi.org/10.1016/j.physb.2013.12.010. URL http://www.sciencedirect.com/science/article/pii/S0921452613007837.

Y. Ashida, R. Schmidt, L. Tarruell, and E. Demler. Many-body interferometry of magnetic polaron dynamics. Phys. Rev. B, 97: 060302, Feb 2018. 10.1103/PhysRevB.97.060302. URL https://link.aps.org/doi/10.1103/PhysRevB.97.060302.

A.J. Leggett. Bose-einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys., 73: 307–356, Apr 2001. 10.1103/RevModPhys.73.307. URL https://link.aps.org/doi/10.1103/RevModPhys.73.307.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75: 3969–3973, Nov 1995. 10.1103/PhysRevLett.75.3969. URL https://link.aps.org/doi/10.1103/PhysRevLett.75.3969.

C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman. Production of two overlapping bose-einstein condensates by sympathetic cooling. Phys. Rev. Lett., 78: 586–589, Jan 1997. 10.1103/PhysRevLett.78.586. URL https://link.aps.org/doi/10.1103/PhysRevLett.78.586.

D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle. Optical confinement of a bose-einstein condensate. Phys. Rev. Lett., 80: 2027–2030, Mar 1998. 10.1103/PhysRevLett.80.2027. URL https://link.aps.org/doi/10.1103/PhysRevLett.80.2027.

H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur, and W. Ketterle. Observation of metastable states in spinor bose-einstein condensates. Phys. Rev. Lett., 82: 2228–2231, Mar 1999. 10.1103/PhysRevLett.82.2228. URL https://link.aps.org/doi/10.1103/PhysRevLett.82.2228.

J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, and W. Ketterle. Spin domains in ground-state bose–einstein condensates. Nature, 396: 345–348, 1998. 10.1038/24567. URL https://doi.org/10.1038/24567.

M. R. Matthews, D. S. Hall, D. S. Jin, J. R. Ensher, C. E. Wieman, E. A. Cornell, F. Dalfovo, C. Minniti, and S. Stringari. Dynamical response of a bose-einstein condensate to a discontinuous change in internal state. Phys. Rev. Lett., 81: 243–247, Jul 1998. 10.1103/PhysRevLett.81.243. URL https://link.aps.org/doi/10.1103/PhysRevLett.81.243.

D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven. Regimes of quantum degeneracy in trapped 1d gases. Phys. Rev. Lett., 85: 3745–3749, Oct 2000. 10.1103/PhysRevLett.85.3745. URL https://link.aps.org/doi/10.1103/PhysRevLett.85.3745.

P. Tommasini, E. J. V. de Passos, A. F. R. de Toledo Piza, M. S. Hussein, and E. Timmermans. Bogoliubov theory for mutually coherent condensates. Phys. Rev. A, 67: 023606, Feb 2003. 10.1103/PhysRevA.67.023606. URL https://link.aps.org/doi/10.1103/PhysRevA.67.023606.

S. Lellouch, T.-L. Dao, T. Koffel, and L. Sanchez-Palencia. Two-component bose gases with one-body and two-body couplings. Phys. Rev. A, 88: 063646, Dec 2013. 10.1103/PhysRevA.88.063646. URL https://link.aps.org/doi/10.1103/PhysRevA.88.063646.

M. Abad and A. Recati. A study of coherently coupled two-component bose-einstein condensates. The European Physical Journal D, 67 (7): 148, Jul 2013. ISSN 1434-6079. 10.1140/epjd/e2013-40053-2. URL https://doi.org/10.1140/epjd/e2013-40053-2.

G.-S. Paraoanu, S. Kohler, F. Sols, and A.J. Leggett. The josephson plasmon as a bogoliubov quasiparticle. Journal of Physics B: Atomic, Molecular and Optical Physics, 34 (23): 4689–4696, nov 2001. 10.1088/0953-4075/34/23/313. URL https://doi.org/10.1088.

A. Recati and F. Piazza. Breaking of goldstone modes in a two-component bose-einstein condensate. Phys. Rev. B, 99: 064505, Feb 2019. 10.1103/PhysRevB.99.064505. URL https://link.aps.org/doi/10.1103/PhysRevB.99.064505.

E. Nicklas. A new tool for miscibility control: Linear coupling. 01 2013.

S. John and T. Quang. Spontaneous emission near the edge of a photonic band gap. Phys. Rev. A, 50: 1764–1769, Aug 1994. 10.1103/PhysRevA.50.1764. URL https://link.aps.org/doi/10.1103/PhysRevA.50.1764.

H.-T. Tan, W.-M. Zhang, and G.-x. Li. Entangling two distant nanocavities via a waveguide. Phys. Rev. A, 83: 062310, Jun 2011. 10.1103/PhysRevA.83.062310. URL https://link.aps.org/doi/10.1103/PhysRevA.83.062310.

J. Prior, I. de Vega, A.W. Chin, S.F. Huelga, and M.B. Plenio. Quantum dynamics in photonic crystals. Phys. Rev. A, 87: 013428, Jan 2013. 10.1103/PhysRevA.87.013428. URL https://link.aps.org/doi/10.1103/PhysRevA.87.013428.

A.G. Kofman, G. Kurizki, and B. Sherman. Spontaneous and induced atomic decay in photonic band structures. Journal of Modern Optics, 41 (2): 353–384, 1994. 10.1080/09500349414550381. URL https://doi.org/10.1080/09500349414550381.

V. P Bykov. Spontaneous emission in a periodic structure. Journal of Experimental and Theoretical Physics, 35: 269, 01 1972.

E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58: 2059–2062, May 1987. 10.1103/PhysRevLett.58.2059. URL https://link.aps.org/doi/10.1103/PhysRevLett.58.2059.

P. Lambropoulos, G.M. Nikolopoulos, T.R. Nielsen, and S. Bay. Fundamental quantum optics in structured reservoirs. Reports on Progress in Physics, 63 (4): 455–503, mar 2000. 10.1088/0034-4885/63/4/201. URL https://doi.org/10.1088.

M. Woldeyohannes and S. John. Coherent control of spontaneous emission near a photonic band edge. Journal of Optics B: Quantum and Semiclassical Optics, 5 (2): R43–R82, feb 2003. 10.1088/1464-4266/5/2/201. URL https://doi.org/10.1088.

T. Quang, M. Woldeyohannes, S. John, and G.S. Agarwal. Coherent control of spontaneous emission near a photonic band edge: A single-atom optical memory device. Phys. Rev. Lett., 79: 5238–5241, Dec 1997. 10.1103/PhysRevLett.79.5238. URL https://link.aps.org/doi/10.1103/PhysRevLett.79.5238.

A. G. Kofman and G. Kurizki. Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys. Rev. Lett., 93: 130406, Sep 2004. 10.1103/PhysRevLett.93.130406. URL https://link.aps.org/doi/10.1103/PhysRevLett.93.130406.

H.P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. OUP Oxford, 2007. ISBN 9780199213900. URL https://books.google.es/books?id=DkcJPwAACAAJ.

A. Rivas, A. Douglas K. Plato, S.F. Huelga, and M.B. Plenio. Markovian master equations: a critical study. New Journal of Physics, 12 (11): 113032, nov 2010. 10.1088/1367-2630/12/11/113032. URL https://doi.org/10.1088.

I. de Vega, D. Alonso, and P. Gaspard. Two-level system immersed in a photonic band-gap material: A non-markovian stochastic schrödinger-equation approach. Phys. Rev. A, 71: 023812, Feb 2005. 10.1103/PhysRevA.71.023812. URL https://link.aps.org/doi/10.1103/PhysRevA.71.023812.

I. de Vega, D. Porras, and I.J. Cirac. Matter-wave emission in optical lattices: Single particle and collective effects. Phys. Rev. Lett., 101: 260404, Dec 2008. 10.1103/PhysRevLett.101.260404. URL https://link.aps.org/doi/10.1103/PhysRevLett.101.260404.

R. Vasile, F. Galve, and R. Zambrini. Spectral origin of non-markovian open-system dynamics: A finite harmonic model without approximations. Phys. Rev. A, 89: 022109, Feb 2014. 10.1103/PhysRevA.89.022109. URL https://link.aps.org/doi/10.1103/PhysRevA.89.022109.

W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F. Nori. General non-markovian dynamics of open quantum systems. Phys. Rev. Lett., 109: 170402, Oct 2012. 10.1103/PhysRevLett.109.170402. URL https://link.aps.org/doi/10.1103/PhysRevLett.109.170402.

F. Giraldi and F. Petruccione. Fractional relaxations in photonic crystals. Journal of Physics A: Mathematical and Theoretical, 47 (39): 395304, sep 2014. 10.1088/1751-8113/47/39/395304. URL https://doi.org/10.1088.

M. Bruderer, A. Klein, S.R. Clark, and D. Jaksch. Polaron physics in optical lattices. Phys. Rev. A, 76: 011605, Jul 2007. 10.1103/PhysRevA.76.011605. URL https://link.aps.org/doi/10.1103/PhysRevA.76.011605.

S. Patrick Rath and R. Schmidt. Field-theoretical study of the bose polaron. Phys. Rev. A, 88: 053632, Nov 2013. 10.1103/PhysRevA.88.053632. URL https://link.aps.org/doi/10.1103/PhysRevA.88.053632.

R.S. Christensen, J. Levinsen, and G.M. Bruun. Quasiparticle properties of a mobile impurity in a bose-einstein condensate. Phys. Rev. Lett., 115: 160401, Oct 2015. 10.1103/PhysRevLett.115.160401. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.160401.

Y.E. Shchadilova, R. Schmidt, F. Grusdt, and E. Demler. Quantum dynamics of ultracold bose polarons. Phys. Rev. Lett., 117: 113002, Sep 2016. 10.1103/PhysRevLett.117.113002. URL https://link.aps.org/doi/10.1103/PhysRevLett.117.113002.

Q. Wang and H. Zhan. On different numerical inverse laplace methods for solute transport problems. Advances in Water Resources, 75: 80 – 92, 2015. ISSN 0309-1708. https://doi.org/10.1016/j.advwatres.2014.11.001. URL http://www.sciencedirect.com/science/article/pii/S0309170814002152.

P.-Y. Lo, H.-N. Xiong, and W.-M. Zhang. Breakdown of bose-einstein distribution in photonic crystals. Scientific Reports, 5, 2015. 10.1038/srep09423. URL https://doi.org/10.1038/srep09423.

J. Spiechowicz, J. Łuczka, and P. Hänggi. Transient anomalous diffusion in periodic systems: ergodicity, symmetry breaking and velocity relaxation. Scientific Reports, 6, 2016. 10.1038/srep30948. URL https://doi.org/10.1038/srep30948.

C. Navarrete-Benlloch, I. de Vega, D. Porras, and J.I. Cirac. Simulating quantum-optical phenomena with cold atoms in optical lattices. New Journal of Physics, 13 (2): 023024, feb 2011. 10.1088/1367-2630/13/2/023024. URL https://doi.org/10.1088.

M. Mehboudi, A. Lampo, C. Charalambous, L.A. Correa, M.Á. García-March, and M. Lewenstein. Using polarons for sub-nk quantum nondemolition thermometry in a bose-einstein condensate. Phys. Rev. Lett., 122: 030403, Jan 2019. 10.1103/PhysRevLett.122.030403. URL https://link.aps.org/doi/10.1103/PhysRevLett.122.030403.

D. S. Petrov. Quantum mechanical stabilization of a collapsing bose-bose mixture. Phys. Rev. Lett., 115: 155302, Oct 2015. 10.1103/PhysRevLett.115.155302. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.155302.

C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell. Quantum liquid droplets in a mixture of bose-einstein condensates. Science, 359 (6373): 301–304, 2018. ISSN 0036-8075. 10.1126/science.aao5686. URL https://science.sciencemag.org/content/359/6373/301.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem