- -

Control of anomalous diffusion of a Bose polaron

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control of anomalous diffusion of a Bose polaron

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Charalambous, Christos es_ES
dc.contributor.author Garcia March, Miguel Angel es_ES
dc.contributor.author Munoz-Gil, Gorka es_ES
dc.contributor.author Grzybowski, Przemyslaw Ryszard es_ES
dc.contributor.author Lewenstein, Maciej es_ES
dc.date.accessioned 2021-11-09T04:34:28Z
dc.date.available 2021-11-09T04:34:28Z
dc.date.issued 2020-02-17 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176619
dc.description.abstract [EN] We study the diffusive behavior of a Bose polaron immersed in a coherently coupled two-component Bose-Einstein Condensate (BEC). We assume a uniform, one-dimensional BEC. Polaron superdiffuses if it couples in the same manner to both components, i.e. either attractively or repulsively to both of them. This is the same behavior as that of an impurity immersed in a single BEC. Conversely, the polaron exhibits a transient nontrivial subdiffusive behavior if it couples attractively to one of the components and repulsively to the other. The anomalous diffusion exponent and the duration of the subdiffusive interval can be controlled with the Rabi frequency of the coherent coupling between the two components, and with the coupling strength of the impurity to the BEC. es_ES
dc.description.sponsorship We (M.L. group) acknowledge the Spanish Ministry MINECO (National Plan 15 Grant: FISICATEAMO No. FIS-2016-79508-P, FPI), the Ministry of Education of Spain (FPI Grant BES-2015-071803), EU FEDER, European Social Fund, FundaciAs Cellex, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341 and CERCA/Program), ERC AdG OSYRIS and NOQIA, EU FETPRO QUIC, and the National Science Centre, Poland-Symfonia Grant No. 2016/20/W/ST4/00314. MAGM acknowledges funding from the Spanish Ministry of Education and Vocational Training (MEFP) through the Beatriz Galindo program 2018 (BEAGAL18/00203). es_ES
dc.language Inglés es_ES
dc.publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften es_ES
dc.relation.ispartof Quantum es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Quantum simulators es_ES
dc.subject Quantum engines es_ES
dc.subject Ultracold atoms es_ES
dc.subject Bose Polaron es_ES
dc.subject Open quantum systems es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Control of anomalous diffusion of a Bose polaron es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.22331/q-2020-02-20-232 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-071803/ES/BES-2015-071803/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GC//2017 SGR 1341/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS-2016-79508/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314//Symfonia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ //BEAGAL18%2F00203//AYUDA BEATRIZ GALINDO MODALIDAD JUNIOR-GARCIA MARCH/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Charalambous, C.; Garcia March, MA.; Munoz-Gil, G.; Grzybowski, PR.; Lewenstein, M. (2020). Control of anomalous diffusion of a Bose polaron. Quantum. 4:232/1-232/18. https://doi.org/10.22331/q-2020-02-20-232 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.22331/q-2020-02-20-232 es_ES
dc.description.upvformatpinicio 232/1 es_ES
dc.description.upvformatpfin 232/18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.identifier.eissn 2521-327X es_ES
dc.relation.pasarela S\409730 es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder MINISTERIO DE CIENCIA INNOVACION Y UNIVERSIDADES es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references P. Hänggi and F. Marchesoni. Introduction: 100years of brownian motion. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2): 026101, 2005. 10.1063/1.1895505. URL https://doi.org/10.1063/1.1895505. es_ES
dc.description.references I. M. Sokolov and J. Klafter. From diffusion to anomalous diffusion: A century after einstein’s brownian motion. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2): 026103, 2005. 10.1063/1.1860472. URL https://doi.org/10.1063/1.1860472. es_ES
dc.description.references H. Scher and E.W. Montroll. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B, 12: 2455–2477, Sep 1975. 10.1103/PhysRevB.12.2455. URL https://link.aps.org/doi/10.1103/PhysRevB.12.2455. es_ES
dc.description.references A. Bunde and S. Havlin. Fractals in science. Springer-Verlag Berlin Heidelberg, 1994. 10.1007/978-3-662-11777-4. es_ES
dc.description.references M J Saxton. Lateral diffusion in an archipelago. single-particle diffusion. Biophys J, 64, 1993. 10.1016/S0006-3495(93)81548-0. URL https://www.ncbi.nlm.nih.gov/pubmed/8369407. es_ES
dc.description.references M. J. Saxton. Single-particle tracking: the distribution of diffusion coefficients. Biophys J, 72, 1997. 10.1016/S0006-3495(97)78820-9. URL https://www.ncbi.nlm.nih.gov/pubmed/9083678. es_ES
dc.description.references F. Leyvraz, J. Adler, A. Aharony, A. Bunde, A. Coniglio, D.C. Hong, H.E. Stanley, and D. Stauffer. The random normal superconductor mixture in one dimension. Journal of Physics A: Mathematical and General, 19 (17): 3683–3692, dec 1986. 10.1088/0305-4470/19/17/030. URL https://doi.org/10.1088. es_ES
dc.description.references S. Hottovy, G. Volpe, and J. Wehr. Noise-induced drift in stochastic differential equations with arbitrary friction and diffusion in the smoluchowski-kramers limit. Journal of Statistical Physics, 146 (4): 762–773, Feb 2012. ISSN 1572-9613. 10.1007/s10955-012-0418-9. URL https://doi.org/10.1007/s10955-012-0418-9. es_ES
dc.description.references A.G. Cherstvy and R. Metzler. Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. Phys. Chem. Chem. Phys., 15: 20220–20235, 2013. 10.1039/C3CP53056F. URL http://dx.doi.org/10.1039/C3CP53056F. es_ES
dc.description.references A.G. Cherstvy, A.V. Chechkin, and R. Metzler. Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. New Journal of Physics, 15 (8): 083039, aug 2013. 10.1088/1367-2630/15/8/083039. URL https://doi.org/10.1088. es_ES
dc.description.references A.G. Cherstvy, A.V. Chechkin, and R. Metzler. Particle invasion, survival, and non-ergodicity in 2d diffusion processes with space-dependent diffusivity. Soft Matter, 10: 1591–1601, 2014. 10.1039/C3SM52846D. URL http://dx.doi.org/10.1039/C3SM52846D. es_ES
dc.description.references P. Massignan, C. Manzo, J. A. Torreno-Pina, M. F. García-Parajo, M. Lewenstein, and G. J. Lapeyre. Nonergodic subdiffusion from brownian motion in an inhomogeneous medium. Phys. Rev. Lett., 112: 150603, Apr 2014. 10.1103/PhysRevLett.112.150603. URL https://link.aps.org/doi/10.1103/PhysRevLett.112.150603. es_ES
dc.description.references Carlo Manzo, Juan A. Torreno-Pina, Pietro Massignan, Gerald J. Lapeyre, Maciej Lewenstein, and Maria F. Garcia Parajo. Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity. Phys. Rev. X, 5: 011021, Feb 2015. 10.1103/PhysRevX.5.011021. URL https://link.aps.org/doi/10.1103/PhysRevX.5.011021. es_ES
dc.description.references C. Charalambous, G. Muñoz Gil, A. Celi, M. F. Garcia-Parajo, M. Lewenstein, C. Manzo, and M. A. García-March. Nonergodic subdiffusion from transient interactions with heterogeneous partners. Phys. Rev. E, 95: 032403, Mar 2017. 10.1103/PhysRevE.95.032403. URL https://link.aps.org/doi/10.1103/PhysRevE.95.032403. es_ES
dc.description.references B. Min, T. Li, M. Rosenkranz, and W. Bao. Subdiffusive spreading of a bose-einstein condensate in random potentials. Phys. Rev. A, 86: 053612, Nov 2012. 10.1103/PhysRevA.86.053612. URL https://link.aps.org/doi/10.1103/PhysRevA.86.053612. es_ES
dc.description.references G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio. Anderson localization of a non-interacting bose–einstein condensate. Nature, 453, 2008. 10.1038/nature07071. URL https://doi.org/10.1038/nature07071. es_ES
dc.description.references F. Jendrzejewski, A. Bernard, K. Müller, P. Cheinet, V. Josse, M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and P. Bouyer. Three-dimensional localization of ultracold atoms in an optical disordered potential. Nature Physics, 8, 2012. 10.1038/nphys2256. URL https://doi.org/10.1038/nphys2256. es_ES
dc.description.references L. Sanchez-Palencia and M. Lewenstein. Disordered quantum gases under control. Nature Physics, 6, 2010. 10.1038/nphys1507. URL https://doi.org/10.1038/nphys1507. es_ES
dc.description.references G. Modugno. Anderson localization in bose–einstein condensates. Reports on Progress in Physics, 73 (10): 102401, sep 2010. 10.1088/0034-4885/73/10/102401. URL https://doi.org/10.1088. es_ES
dc.description.references J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect. Direct observation of anderson localization of matter waves in a controlled disorder. Nature, 453, 2008. 10.1038/nature07000. URL https://doi.org/10.1038/nature07000. es_ES
dc.description.references B. Deissler, M. Zaccanti, G. Roati, C. D’Errico, M. Fattori, M. Modugno, G. Modugno, and M. Inguscio. Delocalization of a disordered bosonic system by repulsive interactions. Nature Physics, 6, 2010. 10.1038/nphys1635. URL https://doi.org/10.1038/nphys1635. es_ES
dc.description.references E. Lucioni, B. Deissler, L. Tanzi, G. Roati, M. Zaccanti, M. Modugno, M. Larcher, F. Dalfovo, M. Inguscio, and G. Modugno. Observation of subdiffusion in a disordered interacting system. Phys. Rev. Lett., 106: 230403, Jun 2011. 10.1103/PhysRevLett.106.230403. URL https://link.aps.org/doi/10.1103/PhysRevLett.106.230403. es_ES
dc.description.references Stefan Donsa, Harald Hofstätter, Othmar Koch, Joachim Burgdörfer, and Iva Březinová. Long-time expansion of a bose-einstein condensate: Observability of anderson localization. Phys. Rev. A, 96: 043630, Oct 2017. 10.1103/PhysRevA.96.043630. URL https://link.aps.org/doi/10.1103/PhysRevA.96.043630. es_ES
dc.description.references D. L. Shepelyansky. Delocalization of quantum chaos by weak nonlinearity. Phys. Rev. Lett., 70: 1787–1790, Mar 1993. 10.1103/PhysRevLett.70.1787. URL https://link.aps.org/doi/10.1103/PhysRevLett.70.1787. es_ES
dc.description.references G. Kopidakis, S. Komineas, S. Flach, and S. Aubry. Absence of wave packet diffusion in disordered nonlinear systems. Phys. Rev. Lett., 100: 084103, Feb 2008. 10.1103/PhysRevLett.100.084103. URL https://link.aps.org/doi/10.1103/PhysRevLett.100.084103. es_ES
dc.description.references A. S. Pikovsky and D. L. Shepelyansky. Destruction of anderson localization by a weak nonlinearity. Phys. Rev. Lett., 100: 094101, Mar 2008. 10.1103/PhysRevLett.100.094101. URL https://link.aps.org/doi/10.1103/PhysRevLett.100.094101. es_ES
dc.description.references S. Flach, D. O. Krimer, and Ch. Skokos. Universal spreading of wave packets in disordered nonlinear systems. Phys. Rev. Lett., 102: 024101, Jan 2009. 10.1103/PhysRevLett.102.024101. URL https://link.aps.org/doi/10.1103/PhysRevLett.102.024101. es_ES
dc.description.references Ch. Skokos, D. O. Krimer, S. Komineas, and S. Flach. Delocalization of wave packets in disordered nonlinear chains. Phys. Rev. E, 79: 056211, May 2009. 10.1103/PhysRevE.79.056211. URL https://link.aps.org/doi/10.1103/PhysRevE.79.056211. es_ES
dc.description.references Hagar Veksler, Yevgeny Krivolapov, and Shmuel Fishman. Spreading for the generalized nonlinear schrödinger equation with disorder. Phys. Rev. E, 80: 037201, Sep 2009. 10.1103/PhysRevE.80.037201. URL https://link.aps.org/doi/10.1103/PhysRevE.80.037201. es_ES
dc.description.references M. Mulansky and A. Pikovsky. Spreading in disordered lattices with different nonlinearities. EPL (Europhysics Letters), 90 (1): 10015, apr 2010. 10.1209/0295-5075/90/10015. URL https://doi.org/10.1209. es_ES
dc.description.references T. V. Laptyeva, J. D. Bodyfelt, D. O. Krimer, Ch. Skokos, and S. Flach. The crossover from strong to weak chaos for nonlinear waves in disordered systems. EPL (Europhysics Letters), 91 (3): 30001, aug 2010. 10.1209/0295-5075/91/30001. URL https://doi.org/10.1209. es_ES
dc.description.references A. Iomin. Subdiffusion in the nonlinear schrödinger equation with disorder. Phys. Rev. E, 81: 017601, Jan 2010. 10.1103/PhysRevE.81.017601. URL https://link.aps.org/doi/10.1103/PhysRevE.81.017601. es_ES
dc.description.references M. Larcher, F. Dalfovo, and M. Modugno. Effects of interaction on the diffusion of atomic matter waves in one-dimensional quasiperiodic potentials. Phys. Rev. A, 80: 053606, Nov 2009. 10.1103/PhysRevA.80.053606. URL https://link.aps.org/doi/10.1103/PhysRevA.80.053606. es_ES
dc.description.references L.M. Aycock, H.M. Hurst, D.K. Efimkin, D. Genkina, H.-I. Lu, V.M. Galitski, and I. B. Spielman. Brownian motion of solitons in a bose–einstein condensate. Proceedings of the National Academy of Sciences, 114 (10): 2503–2508, 2017. ISSN 0027-8424. 10.1073/pnas.1615004114. URL https://www.pnas.org/content/114/10/2503. es_ES
dc.description.references A. Lampo, S.H. Lim, M.A. García-March, and M. Lewenstein. Bose polaron as an instance of quantum Brownian motion. Quantum, 1: 30, September 2017. ISSN 2521-327X. 10.22331/q-2017-09-27-30. URL https://doi.org/10.22331/q-2017-09-27-30. es_ES
dc.description.references A. Lampo, C. Charalambous, M.A. García-March, and M. Lewenstein. Non-markovian polaron dynamics in a trapped bose-einstein condensate. Phys. Rev. A, 98: 063630, Dec 2018. 10.1103/PhysRevA.98.063630. URL https://link.aps.org/doi/10.1103/PhysRevA.98.063630. es_ES
dc.description.references C. Charalambous, M.A. Garcia-March, A. Lampo, M. Mehboudi, and M. Lewenstein. Two distinguishable impurities in BEC: squeezing and entanglement of two Bose polarons. SciPost Phys., 6: 10, 2019. 10.21468/SciPostPhys.6.1.010. URL https://scipost.org/10.21468/SciPostPhys.6.1.010. es_ES
dc.description.references D.K. Efimkin, J. Hofmann, and V. Galitski. Non-markovian quantum friction of bright solitons in superfluids. Phys. Rev. Lett., 116: 225301, May 2016. 10.1103/PhysRevLett.116.225301. URL https://link.aps.org/doi/10.1103/PhysRevLett.116.225301. es_ES
dc.description.references H.M. Hurst, D.K. Efimkin, I. B. Spielman, and V. Galitski. Kinetic theory of dark solitons with tunable friction. Phys. Rev. A, 95: 053604, May 2017. 10.1103/PhysRevA.95.053604. URL https://link.aps.org/doi/10.1103/PhysRevA.95.053604. es_ES
dc.description.references A. Cem Keser and V. Galitski. Analogue stochastic gravity in strongly-interacting bose–einstein condensates. Annals of Physics, 395: 84 – 111, 2018. ISSN 0003-4916. https://doi.org/10.1016/j.aop.2018.05.009. URL http://www.sciencedirect.com/science/article/pii/S0003491618301453. es_ES
dc.description.references Julius Bonart and Leticia F. Cugliandolo. From nonequilibrium quantum brownian motion to impurity dynamics in one-dimensional quantum liquids. Phys. Rev. A, 86: 023636, Aug 2012. 10.1103/PhysRevA.86.023636. URL https://link.aps.org/doi/10.1103/PhysRevA.86.023636. es_ES
dc.description.references X.-D. Bai and J.-K. Xue. Subdiffusion of dipolar gas in one-dimensional quasiperiodic potentials. Chinese Physics Letters, 32 (1): 010302, jan 2015. 10.1088/0256-307x/32/1/010302. URL https://doi.org/10.1088. es_ES
dc.description.references K.-T. Xi, J. Li, and D.-N. Shi. Localization of a two-component bose–einstein condensate in a two-dimensional bichromatic optical lattice. Physica B: Condensed Matter, 436: 149 – 156, 2014. ISSN 0921-4526. https://doi.org/10.1016/j.physb.2013.12.010. URL http://www.sciencedirect.com/science/article/pii/S0921452613007837. es_ES
dc.description.references Y. Ashida, R. Schmidt, L. Tarruell, and E. Demler. Many-body interferometry of magnetic polaron dynamics. Phys. Rev. B, 97: 060302, Feb 2018. 10.1103/PhysRevB.97.060302. URL https://link.aps.org/doi/10.1103/PhysRevB.97.060302. es_ES
dc.description.references A.J. Leggett. Bose-einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys., 73: 307–356, Apr 2001. 10.1103/RevModPhys.73.307. URL https://link.aps.org/doi/10.1103/RevModPhys.73.307. es_ES
dc.description.references K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75: 3969–3973, Nov 1995. 10.1103/PhysRevLett.75.3969. URL https://link.aps.org/doi/10.1103/PhysRevLett.75.3969. es_ES
dc.description.references C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman. Production of two overlapping bose-einstein condensates by sympathetic cooling. Phys. Rev. Lett., 78: 586–589, Jan 1997. 10.1103/PhysRevLett.78.586. URL https://link.aps.org/doi/10.1103/PhysRevLett.78.586. es_ES
dc.description.references D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle. Optical confinement of a bose-einstein condensate. Phys. Rev. Lett., 80: 2027–2030, Mar 1998. 10.1103/PhysRevLett.80.2027. URL https://link.aps.org/doi/10.1103/PhysRevLett.80.2027. es_ES
dc.description.references H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur, and W. Ketterle. Observation of metastable states in spinor bose-einstein condensates. Phys. Rev. Lett., 82: 2228–2231, Mar 1999. 10.1103/PhysRevLett.82.2228. URL https://link.aps.org/doi/10.1103/PhysRevLett.82.2228. es_ES
dc.description.references J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, and W. Ketterle. Spin domains in ground-state bose–einstein condensates. Nature, 396: 345–348, 1998. 10.1038/24567. URL https://doi.org/10.1038/24567. es_ES
dc.description.references M. R. Matthews, D. S. Hall, D. S. Jin, J. R. Ensher, C. E. Wieman, E. A. Cornell, F. Dalfovo, C. Minniti, and S. Stringari. Dynamical response of a bose-einstein condensate to a discontinuous change in internal state. Phys. Rev. Lett., 81: 243–247, Jul 1998. 10.1103/PhysRevLett.81.243. URL https://link.aps.org/doi/10.1103/PhysRevLett.81.243. es_ES
dc.description.references D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven. Regimes of quantum degeneracy in trapped 1d gases. Phys. Rev. Lett., 85: 3745–3749, Oct 2000. 10.1103/PhysRevLett.85.3745. URL https://link.aps.org/doi/10.1103/PhysRevLett.85.3745. es_ES
dc.description.references P. Tommasini, E. J. V. de Passos, A. F. R. de Toledo Piza, M. S. Hussein, and E. Timmermans. Bogoliubov theory for mutually coherent condensates. Phys. Rev. A, 67: 023606, Feb 2003. 10.1103/PhysRevA.67.023606. URL https://link.aps.org/doi/10.1103/PhysRevA.67.023606. es_ES
dc.description.references S. Lellouch, T.-L. Dao, T. Koffel, and L. Sanchez-Palencia. Two-component bose gases with one-body and two-body couplings. Phys. Rev. A, 88: 063646, Dec 2013. 10.1103/PhysRevA.88.063646. URL https://link.aps.org/doi/10.1103/PhysRevA.88.063646. es_ES
dc.description.references M. Abad and A. Recati. A study of coherently coupled two-component bose-einstein condensates. The European Physical Journal D, 67 (7): 148, Jul 2013. ISSN 1434-6079. 10.1140/epjd/e2013-40053-2. URL https://doi.org/10.1140/epjd/e2013-40053-2. es_ES
dc.description.references G.-S. Paraoanu, S. Kohler, F. Sols, and A.J. Leggett. The josephson plasmon as a bogoliubov quasiparticle. Journal of Physics B: Atomic, Molecular and Optical Physics, 34 (23): 4689–4696, nov 2001. 10.1088/0953-4075/34/23/313. URL https://doi.org/10.1088. es_ES
dc.description.references A. Recati and F. Piazza. Breaking of goldstone modes in a two-component bose-einstein condensate. Phys. Rev. B, 99: 064505, Feb 2019. 10.1103/PhysRevB.99.064505. URL https://link.aps.org/doi/10.1103/PhysRevB.99.064505. es_ES
dc.description.references E. Nicklas. A new tool for miscibility control: Linear coupling. 01 2013. es_ES
dc.description.references S. John and T. Quang. Spontaneous emission near the edge of a photonic band gap. Phys. Rev. A, 50: 1764–1769, Aug 1994. 10.1103/PhysRevA.50.1764. URL https://link.aps.org/doi/10.1103/PhysRevA.50.1764. es_ES
dc.description.references H.-T. Tan, W.-M. Zhang, and G.-x. Li. Entangling two distant nanocavities via a waveguide. Phys. Rev. A, 83: 062310, Jun 2011. 10.1103/PhysRevA.83.062310. URL https://link.aps.org/doi/10.1103/PhysRevA.83.062310. es_ES
dc.description.references J. Prior, I. de Vega, A.W. Chin, S.F. Huelga, and M.B. Plenio. Quantum dynamics in photonic crystals. Phys. Rev. A, 87: 013428, Jan 2013. 10.1103/PhysRevA.87.013428. URL https://link.aps.org/doi/10.1103/PhysRevA.87.013428. es_ES
dc.description.references A.G. Kofman, G. Kurizki, and B. Sherman. Spontaneous and induced atomic decay in photonic band structures. Journal of Modern Optics, 41 (2): 353–384, 1994. 10.1080/09500349414550381. URL https://doi.org/10.1080/09500349414550381. es_ES
dc.description.references V. P Bykov. Spontaneous emission in a periodic structure. Journal of Experimental and Theoretical Physics, 35: 269, 01 1972. es_ES
dc.description.references E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58: 2059–2062, May 1987. 10.1103/PhysRevLett.58.2059. URL https://link.aps.org/doi/10.1103/PhysRevLett.58.2059. es_ES
dc.description.references P. Lambropoulos, G.M. Nikolopoulos, T.R. Nielsen, and S. Bay. Fundamental quantum optics in structured reservoirs. Reports on Progress in Physics, 63 (4): 455–503, mar 2000. 10.1088/0034-4885/63/4/201. URL https://doi.org/10.1088. es_ES
dc.description.references M. Woldeyohannes and S. John. Coherent control of spontaneous emission near a photonic band edge. Journal of Optics B: Quantum and Semiclassical Optics, 5 (2): R43–R82, feb 2003. 10.1088/1464-4266/5/2/201. URL https://doi.org/10.1088. es_ES
dc.description.references T. Quang, M. Woldeyohannes, S. John, and G.S. Agarwal. Coherent control of spontaneous emission near a photonic band edge: A single-atom optical memory device. Phys. Rev. Lett., 79: 5238–5241, Dec 1997. 10.1103/PhysRevLett.79.5238. URL https://link.aps.org/doi/10.1103/PhysRevLett.79.5238. es_ES
dc.description.references A. G. Kofman and G. Kurizki. Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys. Rev. Lett., 93: 130406, Sep 2004. 10.1103/PhysRevLett.93.130406. URL https://link.aps.org/doi/10.1103/PhysRevLett.93.130406. es_ES
dc.description.references H.P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. OUP Oxford, 2007. ISBN 9780199213900. URL https://books.google.es/books?id=DkcJPwAACAAJ. es_ES
dc.description.references A. Rivas, A. Douglas K. Plato, S.F. Huelga, and M.B. Plenio. Markovian master equations: a critical study. New Journal of Physics, 12 (11): 113032, nov 2010. 10.1088/1367-2630/12/11/113032. URL https://doi.org/10.1088. es_ES
dc.description.references I. de Vega, D. Alonso, and P. Gaspard. Two-level system immersed in a photonic band-gap material: A non-markovian stochastic schrödinger-equation approach. Phys. Rev. A, 71: 023812, Feb 2005. 10.1103/PhysRevA.71.023812. URL https://link.aps.org/doi/10.1103/PhysRevA.71.023812. es_ES
dc.description.references I. de Vega, D. Porras, and I.J. Cirac. Matter-wave emission in optical lattices: Single particle and collective effects. Phys. Rev. Lett., 101: 260404, Dec 2008. 10.1103/PhysRevLett.101.260404. URL https://link.aps.org/doi/10.1103/PhysRevLett.101.260404. es_ES
dc.description.references R. Vasile, F. Galve, and R. Zambrini. Spectral origin of non-markovian open-system dynamics: A finite harmonic model without approximations. Phys. Rev. A, 89: 022109, Feb 2014. 10.1103/PhysRevA.89.022109. URL https://link.aps.org/doi/10.1103/PhysRevA.89.022109. es_ES
dc.description.references W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F. Nori. General non-markovian dynamics of open quantum systems. Phys. Rev. Lett., 109: 170402, Oct 2012. 10.1103/PhysRevLett.109.170402. URL https://link.aps.org/doi/10.1103/PhysRevLett.109.170402. es_ES
dc.description.references F. Giraldi and F. Petruccione. Fractional relaxations in photonic crystals. Journal of Physics A: Mathematical and Theoretical, 47 (39): 395304, sep 2014. 10.1088/1751-8113/47/39/395304. URL https://doi.org/10.1088. es_ES
dc.description.references M. Bruderer, A. Klein, S.R. Clark, and D. Jaksch. Polaron physics in optical lattices. Phys. Rev. A, 76: 011605, Jul 2007. 10.1103/PhysRevA.76.011605. URL https://link.aps.org/doi/10.1103/PhysRevA.76.011605. es_ES
dc.description.references S. Patrick Rath and R. Schmidt. Field-theoretical study of the bose polaron. Phys. Rev. A, 88: 053632, Nov 2013. 10.1103/PhysRevA.88.053632. URL https://link.aps.org/doi/10.1103/PhysRevA.88.053632. es_ES
dc.description.references R.S. Christensen, J. Levinsen, and G.M. Bruun. Quasiparticle properties of a mobile impurity in a bose-einstein condensate. Phys. Rev. Lett., 115: 160401, Oct 2015. 10.1103/PhysRevLett.115.160401. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.160401. es_ES
dc.description.references Y.E. Shchadilova, R. Schmidt, F. Grusdt, and E. Demler. Quantum dynamics of ultracold bose polarons. Phys. Rev. Lett., 117: 113002, Sep 2016. 10.1103/PhysRevLett.117.113002. URL https://link.aps.org/doi/10.1103/PhysRevLett.117.113002. es_ES
dc.description.references Q. Wang and H. Zhan. On different numerical inverse laplace methods for solute transport problems. Advances in Water Resources, 75: 80 – 92, 2015. ISSN 0309-1708. https://doi.org/10.1016/j.advwatres.2014.11.001. URL http://www.sciencedirect.com/science/article/pii/S0309170814002152. es_ES
dc.description.references P.-Y. Lo, H.-N. Xiong, and W.-M. Zhang. Breakdown of bose-einstein distribution in photonic crystals. Scientific Reports, 5, 2015. 10.1038/srep09423. URL https://doi.org/10.1038/srep09423. es_ES
dc.description.references J. Spiechowicz, J. Łuczka, and P. Hänggi. Transient anomalous diffusion in periodic systems: ergodicity, symmetry breaking and velocity relaxation. Scientific Reports, 6, 2016. 10.1038/srep30948. URL https://doi.org/10.1038/srep30948. es_ES
dc.description.references C. Navarrete-Benlloch, I. de Vega, D. Porras, and J.I. Cirac. Simulating quantum-optical phenomena with cold atoms in optical lattices. New Journal of Physics, 13 (2): 023024, feb 2011. 10.1088/1367-2630/13/2/023024. URL https://doi.org/10.1088. es_ES
dc.description.references M. Mehboudi, A. Lampo, C. Charalambous, L.A. Correa, M.Á. García-March, and M. Lewenstein. Using polarons for sub-nk quantum nondemolition thermometry in a bose-einstein condensate. Phys. Rev. Lett., 122: 030403, Jan 2019. 10.1103/PhysRevLett.122.030403. URL https://link.aps.org/doi/10.1103/PhysRevLett.122.030403. es_ES
dc.description.references D. S. Petrov. Quantum mechanical stabilization of a collapsing bose-bose mixture. Phys. Rev. Lett., 115: 155302, Oct 2015. 10.1103/PhysRevLett.115.155302. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.155302. es_ES
dc.description.references C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell. Quantum liquid droplets in a mixture of bose-einstein condensates. Science, 359 (6373): 301–304, 2018. ISSN 0036-8075. 10.1126/science.aao5686. URL https://science.sciencemag.org/content/359/6373/301. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem