Mostrar el registro completo del ítem
Maroñas-Molano, J.; Paredes Palacios, R.; Ramos, D. (2020). Calibration of deep probabilistic models with decoupled bayesian neural networks. Neurocomputing. 407:194-205. https://doi.org/10.1016/j.neucom.2020.04.103
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/176791
Título: | Calibration of deep probabilistic models with decoupled bayesian neural networks | |
Autor: | Maroñas-Molano, Juan Ramos, Daniel | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Deep Neural Networks (DNNs) have achieved state-of-the-art accuracy performance in many tasks. However, recent works have pointed out that the outputs provided by these models are not well -calibrated, seriously ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.neucom.2020.04.103 | |
Código del Proyecto: |
|
|
Agradecimientos: |
We gratefully acknowledge the feedback provided by Emilio Granell and Enrique Vidal on an earlier manuscript. The authors thank the EU-FEDER Comunitat Valenciana 2014-2020 grant IDIFE-DER/2018/025. We also acknowledge the ...[+]
|
|
Tipo: |
|