Mostrar el registro sencillo del ítem
dc.contributor.author | Maroñas-Molano, Juan | es_ES |
dc.contributor.author | Paredes Palacios, Roberto | es_ES |
dc.contributor.author | Ramos, Daniel | es_ES |
dc.date.accessioned | 2021-11-10T19:05:37Z | |
dc.date.available | 2021-11-10T19:05:37Z | |
dc.date.issued | 2020-09-24 | es_ES |
dc.identifier.issn | 0925-2312 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/176791 | |
dc.description.abstract | [EN] Deep Neural Networks (DNNs) have achieved state-of-the-art accuracy performance in many tasks. However, recent works have pointed out that the outputs provided by these models are not well -calibrated, seriously limiting their use in critical decision scenarios. In this work, we propose to use a decoupled Bayesian stage, implemented with a Bayesian Neural Network (BNN), to map the uncalibrated probabilities provided by a DNN to calibrated ones, consistently improving calibration. Our results evi-dence that incorporating uncertainty provides more reliable probabilistic models, a critical condition for achieving good calibration. We report a generous collection of experimental results using high -accuracy DNNs in standardized image classification benchmarks, showing the good performance, flexibil-ity and robust behaviour of our approach with respect to several state-of-the-art calibration methods. Code for reproducibility is provided. (C) 2020 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | We gratefully acknowledge the feedback provided by Emilio Granell and Enrique Vidal on an earlier manuscript. The authors thank the EU-FEDER Comunitat Valenciana 2014-2020 grant IDIFE-DER/2018/025. We also acknowledge the support of NVIDIA by providing two GPU Titan XP from their grant program and Mario Parreno for providing the logits of the ADIENCE and VGGFACE2 models. Juan Maronas is supported by grant FPI-UPV. Daniel Ramos is supported by the Spanish Ministry of Science, Innovation and Universities via grant RTI2018-098091-B-I00. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Neurocomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Calibration | es_ES |
dc.subject | Bayesian modelling | es_ES |
dc.subject | Bayesian neural networks | es_ES |
dc.subject | Image classification | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Calibration of deep probabilistic models with decoupled bayesian neural networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.neucom.2020.04.103 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098091-B-I00/ES/APRENDIZAJE PROFUNDO EN VOZ PARA APLICACIONES FORENSES Y DE SEGURIDAD/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F025//SISTEMAS DE FABRICACIÓN INTELIGENTES PARA LA INDUSTRIA 4.0/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Maroñas-Molano, J.; Paredes Palacios, R.; Ramos, D. (2020). Calibration of deep probabilistic models with decoupled bayesian neural networks. Neurocomputing. 407:194-205. https://doi.org/10.1016/j.neucom.2020.04.103 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.neucom.2020.04.103 | es_ES |
dc.description.upvformatpinicio | 194 | es_ES |
dc.description.upvformatpfin | 205 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 407 | es_ES |
dc.relation.pasarela | S\419890 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |