- -

Calibration of deep probabilistic models with decoupled bayesian neural networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calibration of deep probabilistic models with decoupled bayesian neural networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Maroñas-Molano, Juan es_ES
dc.contributor.author Paredes Palacios, Roberto es_ES
dc.contributor.author Ramos, Daniel es_ES
dc.date.accessioned 2021-11-10T19:05:37Z
dc.date.available 2021-11-10T19:05:37Z
dc.date.issued 2020-09-24 es_ES
dc.identifier.issn 0925-2312 es_ES
dc.identifier.uri http://hdl.handle.net/10251/176791
dc.description.abstract [EN] Deep Neural Networks (DNNs) have achieved state-of-the-art accuracy performance in many tasks. However, recent works have pointed out that the outputs provided by these models are not well -calibrated, seriously limiting their use in critical decision scenarios. In this work, we propose to use a decoupled Bayesian stage, implemented with a Bayesian Neural Network (BNN), to map the uncalibrated probabilities provided by a DNN to calibrated ones, consistently improving calibration. Our results evi-dence that incorporating uncertainty provides more reliable probabilistic models, a critical condition for achieving good calibration. We report a generous collection of experimental results using high -accuracy DNNs in standardized image classification benchmarks, showing the good performance, flexibil-ity and robust behaviour of our approach with respect to several state-of-the-art calibration methods. Code for reproducibility is provided. (C) 2020 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship We gratefully acknowledge the feedback provided by Emilio Granell and Enrique Vidal on an earlier manuscript. The authors thank the EU-FEDER Comunitat Valenciana 2014-2020 grant IDIFE-DER/2018/025. We also acknowledge the support of NVIDIA by providing two GPU Titan XP from their grant program and Mario Parreno for providing the logits of the ADIENCE and VGGFACE2 models. Juan Maronas is supported by grant FPI-UPV. Daniel Ramos is supported by the Spanish Ministry of Science, Innovation and Universities via grant RTI2018-098091-B-I00. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Neurocomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Calibration es_ES
dc.subject Bayesian modelling es_ES
dc.subject Bayesian neural networks es_ES
dc.subject Image classification es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Calibration of deep probabilistic models with decoupled bayesian neural networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.neucom.2020.04.103 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098091-B-I00/ES/APRENDIZAJE PROFUNDO EN VOZ PARA APLICACIONES FORENSES Y DE SEGURIDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F025//SISTEMAS DE FABRICACIÓN INTELIGENTES PARA LA INDUSTRIA 4.0/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Maroñas-Molano, J.; Paredes Palacios, R.; Ramos, D. (2020). Calibration of deep probabilistic models with decoupled bayesian neural networks. Neurocomputing. 407:194-205. https://doi.org/10.1016/j.neucom.2020.04.103 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.neucom.2020.04.103 es_ES
dc.description.upvformatpinicio 194 es_ES
dc.description.upvformatpfin 205 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 407 es_ES
dc.relation.pasarela S\419890 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem