- -

Applying machine learning to a virtual serious game for neuropsychological assessment.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Applying machine learning to a virtual serious game for neuropsychological assessment.

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marín-Morales, Javier es_ES
dc.contributor.author Carrasco-Ribelles, Lucia A. es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.contributor.author CHICCHI-GIGLIOLI, IRENE ALICE es_ES
dc.date.accessioned 2021-11-17T08:07:52Z
dc.date.available 2021-11-17T08:07:52Z
dc.date.issued 2021-04-23 es_ES
dc.identifier.issn 2165-9567 es_ES
dc.identifier.uri http://hdl.handle.net/10251/177195
dc.description.abstract [EN] Neuropsychological assessment has been traditionally made through paper-and-pencil batteries which usually are time-consuming, decontextualized, and nonecological. These abilities play a critical role in education since they are very related to learning capacity, academic achievement, social functioning, as well as the inhibition of maladaptive behaviors. Meanwhile, serious games are being used in education and psychology to achieve assessments without these limitations, including neuropsychological assessments. While traditional tests can be analyzed with classical statistics, a large number of variables can be extracted from serious games, the analysis of which can be more complex. Machine learning can handle this large amount of information and find patterns that allow us to recognize behaviors. This study aimed to investigate whether machine learning could be used to improve predictive validity in applying a serious game for neuropsychological assessment. Results were based on 60 subjects, including 42 cognitive activities. The validation process showed best results on attention, memory, planning, and cognitive flexibility, achieving accuracies higher or equal to 0.8 and Cohen¿s Kappas higher than 0.55, which implies that the Virtual Serious Game could be a valid tool to perform a neuropsychological evaluation along with traditional tests. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness funded project Advanced Therapeutically Tools for Mental Health (DPI2016-77396-R) and by the European Union through the Operational Program of the European Regional Development Fund (ERDF) on the Valencian Community 2010-2020 (IDIFEDER/2018/029). es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof Proceedings of the 2021 IEEE Global Engineering Education Conference (EDUCON) es_ES
dc.relation.ispartofseries IEEE Global Engineering Education Conference es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Executive function es_ES
dc.subject Virtual reality es_ES
dc.subject Assessment es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Applying machine learning to a virtual serious game for neuropsychological assessment. es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/EDUCON46332.2021.9454138 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F029//INTERFACES DE REALIDAD MIXTA APLICADA A SALUD Y TOMA DE DECISIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///DPI2016-77396-R//HERRAMIENTAS TERAPEUTICAS AVANZADAS PARA SALUD MENTAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Marín-Morales, J.; Carrasco-Ribelles, LA.; Alcañiz Raya, ML.; Chicchi-Giglioli, IA. (2021). Applying machine learning to a virtual serious game for neuropsychological assessment. IEEE. 951-954. https://doi.org/10.1109/EDUCON46332.2021.9454138 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename IEEE Global Engineering Education Conference (EDUCON 2021) es_ES
dc.relation.conferencedate Abril 21-23,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1109/EDUCON46332.2021.9454138 es_ES
dc.description.upvformatpinicio 951 es_ES
dc.description.upvformatpfin 954 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\438085 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem