- -

Deep Learning Detection of Corrupted Segments in Recordings from Wearable Devices to Improve Atrial Fibrillation Screening

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Deep Learning Detection of Corrupted Segments in Recordings from Wearable Devices to Improve Atrial Fibrillation Screening

Show full item record

Huerta, Á.; Martínez-Rodrigo, A.; Arias, MA.; Langley, P.; Rieta, JJ.; Alcaraz, R. (2020). Deep Learning Detection of Corrupted Segments in Recordings from Wearable Devices to Improve Atrial Fibrillation Screening. IEEE. 1-4. https://doi.org/10.1109/EHB50910.2020.9280198

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/177793

Files in this item

Item Metadata

Title: Deep Learning Detection of Corrupted Segments in Recordings from Wearable Devices to Improve Atrial Fibrillation Screening
Author: Huerta, Álvaro Martínez-Rodrigo, Arturo Arias, Miguel A. Langley, Phillip Rieta, J J Alcaraz, Raúl
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in clinical practice. It is associated with an increased risk of cardiovascular events, but its early detection is an unresolved challenge. For ...[+]
Subjects: Atrial Fibrillation , Continuous Wavelet Transform , Convolutional Neural Network , Quality Assessment , Single-lead Electrocardiogram
Copyrigths: Cerrado
ISBN: 978-1-7281-8803-4
Source:
2020 E-Health and Bioengineering Conference (EHB).
DOI: 10.1109/EHB50910.2020.9280198
Publisher:
IEEE
Publisher version: https://doi.org/10.1109/EHB50910.2020.9280198
Conference name: 8th International Conference on e-Health and Bioengineering (EHB 2020)
Conference place: Online
Conference date: Octubre 29-30,2020
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/
info:eu-repo/grantAgreement///SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/
info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/
Description: ¿© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.¿
Thanks:
This research has been supported by grants DPI2017¿83952¿C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha, AICO/2019/036 from Generalitat Valenciana and FEDER 2018/11744
Type: Comunicación en congreso Capítulo de libro

recommendations

 

This item appears in the following Collection(s)

Show full item record