Mostrar el registro sencillo del ítem
dc.contributor.author | Huerta, Álvaro | es_ES |
dc.contributor.author | Martínez-Rodrigo, Arturo | es_ES |
dc.contributor.author | Arias, Miguel A. | es_ES |
dc.contributor.author | Langley, Phillip | es_ES |
dc.contributor.author | Rieta, J J | es_ES |
dc.contributor.author | Alcaraz, Raúl | es_ES |
dc.date.accessioned | 2021-12-01T09:44:32Z | |
dc.date.available | 2021-12-01T09:44:32Z | |
dc.date.issued | 2020-10-30 | es_ES |
dc.identifier.isbn | 978-1-7281-8803-4 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/177793 | |
dc.description | ¿© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.¿ | es_ES |
dc.description.abstract | [EN] Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in clinical practice. It is associated with an increased risk of cardiovascular events, but its early detection is an unresolved challenge. For that purpose, long-term wearable electrocardiogram (ECG) recording systems are being widely used in the last years, because the arrhythmia often starts with asymptomatic and very short episodes. However, these equipments work in highly dynamics and ever-changing environments, thus providing ECG signals strongly corrupted with different kinds of noises. In this context, ECG quality assessment results essential for a precise and robust AF detection. Hence, this work introduces a deep learning-based algorithm to discern between high- and low-quality segments in single-lead ECG recordings obtained from patients with intermittent AF. The method is based on the high learning capability of a convolutional neural network, which has been trained with 2-D images obtained when turning ECG signals into wavelet scalograms. The obtained results have reported a great ability to discern between high- and low-quality ECG excerpts about 95%, only misclassifying around 6% of clean AF intervals as noisy segments. These outcomes have improved by more than 20% performances of most previous ECG quality assessment algorithms also dealing with AF signals. | es_ES |
dc.description.sponsorship | This research has been supported by grants DPI2017¿83952¿C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha, AICO/2019/036 from Generalitat Valenciana and FEDER 2018/11744 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | 2020 E-Health and Bioengineering Conference (EHB) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Atrial Fibrillation | es_ES |
dc.subject | Continuous Wavelet Transform | es_ES |
dc.subject | Convolutional Neural Network | es_ES |
dc.subject | Quality Assessment | es_ES |
dc.subject | Single-lead Electrocardiogram | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Deep Learning Detection of Corrupted Segments in Recordings from Wearable Devices to Improve Atrial Fibrillation Screening | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1109/EHB50910.2020.9280198 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Huerta, Á.; Martínez-Rodrigo, A.; Arias, MA.; Langley, P.; Rieta, JJ.; Alcaraz, R. (2020). Deep Learning Detection of Corrupted Segments in Recordings from Wearable Devices to Improve Atrial Fibrillation Screening. IEEE. 1-4. https://doi.org/10.1109/EHB50910.2020.9280198 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 8th International Conference on e-Health and Bioengineering (EHB 2020) | es_ES |
dc.relation.conferencedate | Octubre 29-30,2020 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/EHB50910.2020.9280198 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 4 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\433195 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |