- -

Deep Learning Detection of Corrupted Segments in Recordings from Wearable Devices to Improve Atrial Fibrillation Screening

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep Learning Detection of Corrupted Segments in Recordings from Wearable Devices to Improve Atrial Fibrillation Screening

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Huerta, Álvaro es_ES
dc.contributor.author Martínez-Rodrigo, Arturo es_ES
dc.contributor.author Arias, Miguel A. es_ES
dc.contributor.author Langley, Phillip es_ES
dc.contributor.author Rieta, J J es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.date.accessioned 2021-12-01T09:44:32Z
dc.date.available 2021-12-01T09:44:32Z
dc.date.issued 2020-10-30 es_ES
dc.identifier.isbn 978-1-7281-8803-4 es_ES
dc.identifier.uri http://hdl.handle.net/10251/177793
dc.description ¿© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.¿ es_ES
dc.description.abstract [EN] Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in clinical practice. It is associated with an increased risk of cardiovascular events, but its early detection is an unresolved challenge. For that purpose, long-term wearable electrocardiogram (ECG) recording systems are being widely used in the last years, because the arrhythmia often starts with asymptomatic and very short episodes. However, these equipments work in highly dynamics and ever-changing environments, thus providing ECG signals strongly corrupted with different kinds of noises. In this context, ECG quality assessment results essential for a precise and robust AF detection. Hence, this work introduces a deep learning-based algorithm to discern between high- and low-quality segments in single-lead ECG recordings obtained from patients with intermittent AF. The method is based on the high learning capability of a convolutional neural network, which has been trained with 2-D images obtained when turning ECG signals into wavelet scalograms. The obtained results have reported a great ability to discern between high- and low-quality ECG excerpts about 95%, only misclassifying around 6% of clean AF intervals as noisy segments. These outcomes have improved by more than 20% performances of most previous ECG quality assessment algorithms also dealing with AF signals. es_ES
dc.description.sponsorship This research has been supported by grants DPI2017¿83952¿C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha, AICO/2019/036 from Generalitat Valenciana and FEDER 2018/11744 es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof 2020 E-Health and Bioengineering Conference (EHB) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial Fibrillation es_ES
dc.subject Continuous Wavelet Transform es_ES
dc.subject Convolutional Neural Network es_ES
dc.subject Quality Assessment es_ES
dc.subject Single-lead Electrocardiogram es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Deep Learning Detection of Corrupted Segments in Recordings from Wearable Devices to Improve Atrial Fibrillation Screening es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/EHB50910.2020.9280198 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Huerta, Á.; Martínez-Rodrigo, A.; Arias, MA.; Langley, P.; Rieta, JJ.; Alcaraz, R. (2020). Deep Learning Detection of Corrupted Segments in Recordings from Wearable Devices to Improve Atrial Fibrillation Screening. IEEE. 1-4. https://doi.org/10.1109/EHB50910.2020.9280198 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 8th International Conference on e-Health and Bioengineering (EHB 2020) es_ES
dc.relation.conferencedate Octubre 29-30,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1109/EHB50910.2020.9280198 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\433195 es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem