Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez-Pelegrí, Manuel | es_ES |
dc.contributor.author | Monmeneu, Jose V. | es_ES |
dc.contributor.author | López-Lereu, María P. | es_ES |
dc.contributor.author | Ruiz-España, Silvia | es_ES |
dc.contributor.author | Del-Canto, Irene | es_ES |
dc.contributor.author | Bodi, Vicente | es_ES |
dc.contributor.author | Moratal, David | es_ES |
dc.date.accessioned | 2021-12-01T09:44:33Z | |
dc.date.available | 2021-12-01T09:44:33Z | |
dc.date.issued | 2020-10-28 | es_ES |
dc.identifier.isbn | 978-1-7281-9574-2 | es_ES |
dc.identifier.issn | 2471-7819 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/177794 | |
dc.description.abstract | [EN] Characterization of the heart anatomy and function is mostly done with magnetic resonance image cine series. To achieve a correct characterization, the volume of the right and left ventricle need to be segmented, which is a timeconsuming task. We propose a new convolutional neural network architecture that combines U-net with PSP modules (PSPU-net) for the segmentation of left and right ventricle cavities and left ventricle myocardium in the diastolic frame of short-axis cine MRI images and compare its results against a classic 3D U-net architecture. We used a dataset containing 399 cases in total. The results showed higher quality results in both segmentation and final volume estimation for a test set of 99 cases in the case of the PSPU-net, with global dice metrics of 0.910 and median absolute relative errors in volume estimations of 0.026 and 0.039 for the left ventricle cavity and myocardium and 0.051 for the right ventricles cavity. | es_ES |
dc.description.sponsorship | DM acknowledges financial support from the Conselleria d'Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana (grants AEST/2019/037 and AEST/2020/029), from the Agencia Valenciana de la Innovacion, Generalitat Valenciana (ref. INNCAD00/19/085), and from the Centro para el Desarrollo Tecnologico Industrial (Programa Eurostars-2, actuacion Interempresas Internacional), Spanish Ministerio de Ciencia, Innovacion y Universidades (ref. CIIP20192020). We are grateful to Andres Larroza for his valuable technical assistance in the project. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE Computer Society | es_ES |
dc.relation.ispartof | Proceedings. IEEE 20th International Conference on Bioinformatics and Bioengineering. BIBE 2020 | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | MRI | es_ES |
dc.subject | U-net | es_ES |
dc.subject | PSP | es_ES |
dc.subject | Segmentation | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Left ventricle | es_ES |
dc.subject | Right ventricle | es_ES |
dc.subject | Volume estimation | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | PSPU-Net for Automatic Short Axis Cine MRI Segmentation of Left and Right Ventricles | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1109/BIBE50027.2020.00177 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//CIIP-20192020/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AVI//INNCAD00%2F19%2F085//Proyecto 4DTools: nuevas técnicas y biomarcadores para diagnóstico-pronóstico de patologías de la aorta ascendente a través de técnicas de imagen médica/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AEST%2F2019%2F037/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AEST%2F2020%2F029//Aplicación de técnicas de deep learning (aprendizaje profundo) para un análisis automático de imágenes de Resonancia/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.description.bibliographicCitation | Pérez-Pelegrí, M.; Monmeneu, JV.; López-Lereu, MP.; Ruiz-España, S.; Del-Canto, I.; Bodi, V.; Moratal, D. (2020). PSPU-Net for Automatic Short Axis Cine MRI Segmentation of Left and Right Ventricles. IEEE Computer Society. 1048-1053. https://doi.org/10.1109/BIBE50027.2020.00177 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | IEEE 20th International Conference on BioInformatics and BioEngineering (BIBE 2020) | es_ES |
dc.relation.conferencedate | Octubre 26-28,2020 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/BIBE50027.2020.00177 | es_ES |
dc.description.upvformatpinicio | 1048 | es_ES |
dc.description.upvformatpfin | 1053 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\424482 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agència Valenciana de la Innovació | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |