Pérez-Pelegrí, M.; Monmeneu, JV.; López-Lereu, MP.; Ruiz-España, S.; Del-Canto, I.; Bodi, V.; Moratal, D. (2020). PSPU-Net for Automatic Short Axis Cine MRI Segmentation of Left and Right Ventricles. IEEE Computer Society. 1048-1053. https://doi.org/10.1109/BIBE50027.2020.00177
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/177794
Título:
|
PSPU-Net for Automatic Short Axis Cine MRI Segmentation of Left and Right Ventricles
|
Autor:
|
Pérez-Pelegrí, Manuel
Monmeneu, Jose V.
López-Lereu, María P.
Ruiz-España, Silvia
Del-Canto, Irene
Bodi, Vicente
Moratal, David
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
|
Fecha difusión:
|
|
Resumen:
|
[EN] Characterization of the heart anatomy and function is mostly done with magnetic resonance image cine series. To achieve a correct characterization, the volume of the right and left ventricle need to be segmented, which ...[+]
[EN] Characterization of the heart anatomy and function is mostly done with magnetic resonance image cine series. To achieve a correct characterization, the volume of the right and left ventricle need to be segmented, which is a timeconsuming task. We propose a new convolutional neural network architecture that combines U-net with PSP modules (PSPU-net) for the segmentation of left and right ventricle cavities and left ventricle myocardium in the diastolic frame of short-axis cine MRI images and compare its results against a classic 3D U-net architecture. We used a dataset containing 399 cases in total. The results showed higher quality results in both segmentation and final volume estimation for a test set of 99 cases in the case of the PSPU-net, with global dice metrics of 0.910 and median absolute relative errors in volume estimations of 0.026 and 0.039 for the left ventricle cavity and myocardium and 0.051 for the right ventricles cavity.
[-]
|
Palabras clave:
|
MRI
,
U-net
,
PSP
,
Segmentation
,
Deep learning
,
Left ventricle
,
Right ventricle
,
Volume estimation
|
Derechos de uso:
|
Reserva de todos los derechos
|
ISBN:
|
978-1-7281-9574-2
|
Fuente:
|
Proceedings. IEEE 20th International Conference on Bioinformatics and Bioengineering. BIBE 2020. (issn:
2471-7819
)
|
DOI:
|
10.1109/BIBE50027.2020.00177
|
Editorial:
|
IEEE Computer Society
|
Versión del editor:
|
https://doi.org/10.1109/BIBE50027.2020.00177
|
Título del congreso:
|
IEEE 20th International Conference on BioInformatics and BioEngineering (BIBE 2020)
|
Lugar del congreso:
|
Online
|
Fecha congreso:
|
Octubre 26-28,2020
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MCIU//CIIP-20192020/
info:eu-repo/grantAgreement/AVI//INNCAD00%2F19%2F085//Proyecto 4DTools: nuevas técnicas y biomarcadores para diagnóstico-pronóstico de patologías de la aorta ascendente a través de técnicas de imagen médica/
info:eu-repo/grantAgreement/GVA//AEST%2F2019%2F037/
info:eu-repo/grantAgreement/GVA//AEST%2F2020%2F029//Aplicación de técnicas de deep learning (aprendizaje profundo) para un análisis automático de imágenes de Resonancia/
|
Agradecimientos:
|
DM acknowledges financial support from the Conselleria d'Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana (grants AEST/2019/037 and AEST/2020/029), from the Agencia Valenciana de la Innovacion, Generalitat ...[+]
DM acknowledges financial support from the Conselleria d'Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana (grants AEST/2019/037 and AEST/2020/029), from the Agencia Valenciana de la Innovacion, Generalitat Valenciana (ref. INNCAD00/19/085), and from the Centro para el Desarrollo Tecnologico Industrial (Programa Eurostars-2, actuacion Interempresas Internacional), Spanish Ministerio de Ciencia, Innovacion y Universidades (ref. CIIP20192020). We are grateful to Andres Larroza for his valuable technical assistance in the project.
[-]
|
Tipo:
|
Comunicación en congreso
Artículo
Capítulo de libro
|