- -

Efficient finite element modelling of sound propagation in after treatment devices with arbitrary cross section

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient finite element modelling of sound propagation in after treatment devices with arbitrary cross section

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Denia Guzmán, Francisco David es_ES
dc.contributor.author Sánchez Orgaz, Eva María es_ES
dc.contributor.author Ferrándiz-Catalá, Borja es_ES
dc.contributor.author Martínez Casas, José es_ES
dc.contributor.author Baeza González, Luis Miguel es_ES
dc.date.accessioned 2021-12-09T07:08:27Z
dc.date.available 2021-12-09T07:08:27Z
dc.date.issued 2020-07-10 es_ES
dc.identifier.isbn 978-84-09-25132-2 es_ES
dc.identifier.uri http://hdl.handle.net/10251/178038
dc.description.abstract [EN] The acoustic modelling of exhaust after-treatment devices, such as catalytic converters (CC) and diesel particulate filters (DPF), usually requires the use of multidimensional numerical techniques to assess the influence of higher order modes on the sound attenuation performance. Three-dimensional (3D) wave propagation can be considered through the finite element method (FEM). With a view to improving the computational expenditure of full 3D FEM, an efficient modelling technique is presented in this work to speed up transmission loss (TL) calculations in after-treatment devices with arbitrary cross section incorporating monoliths. The efficient modelling approach is based on the mode matching method, combining: (1) transversal pressure modes computed through a 2D FEM approach for devices with arbitrary but axially uniform cross section; (2) compatibility conditions of the acoustic fields at the device geometric discontinuities. For the acoustic modelling of monoliths, these are replaced by four pole transfer matrices relating the acoustic fields at both sides of the monolithic region. Mode matching TL results are compared with full 3D FE simulations and experimental measurements for some selected configurations, showing a good agreement. For a given accuracy, the computational efficiency of the mode matching technique proposed in this work improves that of full 3D FE calculations. TL improvements are achieved by suitable locations of a DPF inlet/outlet ducts. Next, a Genetic Algorithm (GA)-based optimization approach is used in order to improve the attenuation performance of the after-treatment device by varying the geometry as well as the monolith properties. Results show that the optimized configuration outperforms the initial design at target frequencies. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support of Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación through project TRA2017-84701-R and Generalitat Valenciana through project PROMETEO/2016/007. es_ES
dc.language Inglés es_ES
dc.relation.ispartof Modelling for Engineering & Human Behaviour 2020 es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acoustics es_ES
dc.subject Finite element method es_ES
dc.subject Mode matching method es_ES
dc.subject Monolith es_ES
dc.subject Catalytic converter es_ES
dc.subject Diesel particulate filter es_ES
dc.subject Transfer matrix es_ES
dc.subject Transmission loss es_ES
dc.subject Optimization es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Efficient finite element modelling of sound propagation in after treatment devices with arbitrary cross section es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007//Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Denia Guzmán, FD.; Sánchez Orgaz, EM.; Ferrándiz-Catalá, B.; Martínez Casas, J.; Baeza González, LM. (2020). Efficient finite element modelling of sound propagation in after treatment devices with arbitrary cross section. 59-65. http://hdl.handle.net/10251/178038 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename Mathematical Modelling in Engineering & Human Behaviour 2020 es_ES
dc.relation.conferencedate Julio 08-10,2020 es_ES
dc.relation.conferenceplace Valencia, España es_ES
dc.relation.publisherversion https://jornadas.imm.upv.es/2020/home.html es_ES
dc.description.upvformatpinicio 59 es_ES
dc.description.upvformatpfin 65 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\415203 es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem