Resumen:
|
[ES] La computación afectiva es un campo de la informática con muchas aplicaciones por desarrollar
y explotar. En este trabajo aplicaremos la computación afectiva a entornos de Realidad Virtual
(RV) interactivos para ...[+]
[ES] La computación afectiva es un campo de la informática con muchas aplicaciones por desarrollar
y explotar. En este trabajo aplicaremos la computación afectiva a entornos de Realidad Virtual
(RV) interactivos para estudiar la respuesta emotiva de los usuarios a distintos estímulos.
En primer lugar, se ha creado un dataset propio, recopilando los datos fisiológicos de distintos
usuarios tras exponerlos a distintos estímulos con tal de provocarles emociones, junto con sus
respuestas a cuestionarios del tipo “Self-Assessment Manikin” para inferir las emociones
sentidas. Estos datos fueron recopilados finalmente con un prototipo creado con una placa
Arduino y varios sensores conectados y programados.
Dicho dataset se ha utilizado posteriormente para para crear un modelo de regresión de las
emociones sentidas por cada usuario usando una estructura de redes neuronales LTSM (Long
Short-Term Memory), y se ha aplicado para la observación de la respuesta emotiva a distintos
estímulos en escenarios de RV interactivos que se han preparado. Entre los estímulos
comparados en los escenarios de RV están el uso de audio máquina o el uso de audio humano,
el uso de distintos tipos de subtítulos, y el uso de texto o de audio para describir puntos de
interés.
En cuanto a los resultados, los estímulos seleccionados no han provocado una gran respuesta
emotiva por parte del usuario. Por otra parte, el modelo de regresión ha tenido resultados
aceptables a la hora de estimar la respuesta emotiva de los usuarios en base a sus métricas
fisiológicas.
Se espera que este estudio preliminar abra la puerta a una nueva línea de investigación en esta
área, materializándose en una Tesis Doctoral. Los resultados obtenidos no han sido conclusivos
por falta de medios, como el: reducido número de voluntarios para el estudio, y baja calidad de
los sensores utilizados para recopilación de métricas (a falta de acceso a otros mejores), así
como por las limitaciones de tiempo.
[-]
[CA] La computació afectiva és un camp de la informàtica amb moltes aplicacions per desenvolupar i
explotar. En aquest treball aplicarem la computació afectiva a entorns de Realitat Virtual (RV)
interactius per estudiar ...[+]
[CA] La computació afectiva és un camp de la informàtica amb moltes aplicacions per desenvolupar i
explotar. En aquest treball aplicarem la computació afectiva a entorns de Realitat Virtual (RV)
interactius per estudiar la resposta emotiva dels usuaris a distints estímuls.
En primer lloc, s'ha creat un dataset propi, recopilant les dades fisiològiques de distints usuaris,
després d'exposar-los a distints estímuls per provocar-los emocions, junt amb les seues
respostes a qüestionaris del tipus “Self-Assessment Manikin” per inferir les emocions sentides.
Aquestes dades van ser recopilades finalment amb un prototip creat amb una placa Arduino i
diversos sensors connectats i programats
Aquest dataset s'ha utilitzat posteriorment per a crear un model de regressió de les emocions
sentides usant una estructura de xarxes neuronals LTSM (Long Short-Term Memory), i s'ha
aplicat per a l'observació de la resposta emotiva a cada estímul en els escenaris de RV que s'han
preparat. Entre els estímuls comparats en els escenaris de RV estan l'ús d'àudio màquina o l'ús
d'àudio humà, l'ús de diferents tipus de subtítols, i l'ús de text o d'àudio per a descriure punts
d'interès.
Quant als resultats, els estímuls seleccionats no han provocat una gran resposta emotiva per
part de l'usuari. D'altra banda el model de regressió ha tingut resultats acceptables a l'hora
d'estimar la resposta emotiva dels usuaris sobre la base de les seves mètriques fisiològiques.
S'espera que aquest estudi preliminar siga el punt de partida a una nova línia d'investigació en
aquesta àrea, materialitzant-se en una Tesi Doctoral. Els resultats obtinguts no han sigut
conclusius per falta de mitjans, com un reduït nombre de voluntaris per a l'estudi, i baixa qualitat
dels sensors utilitzats per a recopilació de mètrica (a falta d'accés a altres millors), així com per
les limitacions temporals.
[-]
[EN] Affective computing is a field of computing with many applications to develop and exploit. In
this work we will apply affective computing to interactive Virtual Reality (VR) environments to
study the emotional ...[+]
[EN] Affective computing is a field of computing with many applications to develop and exploit. In
this work we will apply affective computing to interactive Virtual Reality (VR) environments to
study the emotional response of users to different stimuli.
First, a dataset has been created, by collecting the physiological data from different users after
exposing them to different stimuli to provoke emotions, together with their responses to “Self-
Assessment Manikin” questionnaires to infer the emotions felt. This data was finally collected
with a prototype created with an Arduino board and several sensors connected and
programmed.
This dataset has subsequently been used to create a regression model of the emotions felt by
each user using an LTSM (Long Short-Term Memory) neural network structure, and it has been
applied to observe the emotional response to each stimulus in the VR scenarios that have been
prepared and presented to the users. Among the stimuli compared in VR scenarios are the use
of computer-generated audio or the use of human audio, the use of different types of subtitles,
and the use of text or audio to describe points of interest.
Regarding the results, the selected stimuli have not elicited a great emotional response from the
user. On the other hand, the regression model has had acceptable results when estimating the
emotional response of users based on their physiological metrics.
This preliminary study is expected to open the door to a new research line in this field, being
further developed in a PhD Thesis. The obtained results have not been conclusive due to lack of
means, like reduced number of volunteers for the study and low quality of the sensors used to
collect the metrics (in the absence of access to better ones), as well as time constraints.
[-]
|