Resumen:
|
[EN] Purpose: To evaluate the potential of 2D texture features extracted from magnetic resonance (MR) images for differentiating brain metastasis (BM) and glioblastomas (GBM) following a radiomics approach.
Methods: This ...[+]
[EN] Purpose: To evaluate the potential of 2D texture features extracted from magnetic resonance (MR) images for differentiating brain metastasis (BM) and glioblastomas (GBM) following a radiomics approach.
Methods: This retrospective study included 50 patients with BM and 50 with GBM who underwent T1-weighted MRI between December 2010 and January 2017. Eighty-eight rotation-invariant texture features were computed for each segmented lesion using six texture analysis methods. These features were also extracted from the four images obtained after applying the discrete wavelet transform (88 features x 4 images). Three feature selection methods and five predictive models were evaluated. A 5-fold cross-validation scheme was used to randomly split the study group into training (80 patients) and testing (20 patients), repeating the process ten times. Classification was evaluated computing the average area under the receiver operating characteristic curve. Sensibility, specificity and accuracy were also computed. The whole process was tested quantizing the images with different gray-level values to evaluate their influence in the final results.
Results: Highest classification accuracy was obtained using the original images quantized with 128 gray-levels and a feature selection method based on the p-value. The best overall performance was achieved using a support vector machine model with a subset of 32 features (AUC = 0.896 +/- 0.067, sensitivity of 82% and specificity of 80%). Naive Bayes and k-nearest neighbors models showed also valuable results (AUC approximate to 0.8) with a lower number of features (< 13), thus suggesting that these models may be more generalizable when using external validations.
Conclusion: The proposed radiomics MRI approach is able to discriminate between GBM and BM with high accuracy employing a set of 2D texture features, thus helping in the diagnosis of brain lesions in a fast and noninvasive way.
[-]
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/
...[+]
info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/
info:eu-repo/grantAgreement/MCIU//CIIP-20192020/
info:eu-repo/grantAgreement/AVI//INNCAD00%2F19%2F085//Proyecto 4DTools: nuevas técnicas y biomarcadores para diagnóstico-pronóstico de patologías de la aorta ascendente a través de técnicas de imagen médica/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2015%2F078//AYUDA VALI+D PREDOCTORAL-ORTIZ RAMON (PROYECTO: ANALISIS DE IMAGEN DE RESONANCIA MAGNETICA PARA EL SEGUIMIENTO DE LA REGENERACION AXONAL DEL SISTEMA NERVIOSO CENTRAL MEDIANTE LA IMPLANTACION DE CELULAS NEURALES Y BIOMATERIALES EN RATAS)/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AEST%2F2017%2F013//AYUDA ESTANCIAS EN EMPRESAS GVA/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AEST%2F2018%2F021//INGENIERIA CIVIL, INGENIERIA ELECTRICA, INGENIERIA ELECTRONICA, INGENIERIA INFORMATICA, INGENIERIA INDUSTRIAL, INGENIERIA QUIMICA/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AEST%2F2019%2F037//AYUDA ESTANCIA EN EMPRESA EXPLORACIONES RADIOLOGICAS ESPECIALES S.L. "CARACTERIZACION DE LA CARDIOMIOPATIA HIPERTROFICA Y DEL CORAZON DE ATLETA"/
[-]
|
Agradecimientos:
|
This work has been partially funded by the Spanish Ministerio de Economia y Competitividad (MINECO, Spain) and FEDER funds [grant number BFU2015-64380-C2-2-R].
David Moratal acknowledges financial support from the Conselleria ...[+]
This work has been partially funded by the Spanish Ministerio de Economia y Competitividad (MINECO, Spain) and FEDER funds [grant number BFU2015-64380-C2-2-R].
David Moratal acknowledges financial support from the Conselleria d'Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana (grants AEST/2017/013, AEST/2018/021, and AEST/2019/037), from the Agencia Valenciana de la Innovacion, Generalitat Valenciana (ref. INNCAD00/19/085), and from the Centro para el Desarrollo Tecnologico Industrial (Programa Eurostars-2, actuacion Interempresas Internacional), Spanish Ministerio de Ciencia, Innovacion y Universidades (ref. CIIP-20192020).
Rafael Ortiz-Ramon was supported by grant ACIF/2015/078 from the Conselleria d'Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana (Spain).
Document
[-]
|