- -

Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ortiz-Ramón, Rafael es_ES
dc.contributor.author Ruiz-España, Silvia es_ES
dc.contributor.author Molla-Olmos, Enrique es_ES
dc.contributor.author Moratal, David es_ES
dc.date.accessioned 2021-12-10T19:27:28Z
dc.date.available 2021-12-10T19:27:28Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 1120-1797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/178174
dc.description.abstract [EN] Purpose: To evaluate the potential of 2D texture features extracted from magnetic resonance (MR) images for differentiating brain metastasis (BM) and glioblastomas (GBM) following a radiomics approach. Methods: This retrospective study included 50 patients with BM and 50 with GBM who underwent T1-weighted MRI between December 2010 and January 2017. Eighty-eight rotation-invariant texture features were computed for each segmented lesion using six texture analysis methods. These features were also extracted from the four images obtained after applying the discrete wavelet transform (88 features x 4 images). Three feature selection methods and five predictive models were evaluated. A 5-fold cross-validation scheme was used to randomly split the study group into training (80 patients) and testing (20 patients), repeating the process ten times. Classification was evaluated computing the average area under the receiver operating characteristic curve. Sensibility, specificity and accuracy were also computed. The whole process was tested quantizing the images with different gray-level values to evaluate their influence in the final results. Results: Highest classification accuracy was obtained using the original images quantized with 128 gray-levels and a feature selection method based on the p-value. The best overall performance was achieved using a support vector machine model with a subset of 32 features (AUC = 0.896 +/- 0.067, sensitivity of 82% and specificity of 80%). Naive Bayes and k-nearest neighbors models showed also valuable results (AUC approximate to 0.8) with a lower number of features (< 13), thus suggesting that these models may be more generalizable when using external validations. Conclusion: The proposed radiomics MRI approach is able to discriminate between GBM and BM with high accuracy employing a set of 2D texture features, thus helping in the diagnosis of brain lesions in a fast and noninvasive way. es_ES
dc.description.sponsorship This work has been partially funded by the Spanish Ministerio de Economia y Competitividad (MINECO, Spain) and FEDER funds [grant number BFU2015-64380-C2-2-R]. David Moratal acknowledges financial support from the Conselleria d'Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana (grants AEST/2017/013, AEST/2018/021, and AEST/2019/037), from the Agencia Valenciana de la Innovacion, Generalitat Valenciana (ref. INNCAD00/19/085), and from the Centro para el Desarrollo Tecnologico Industrial (Programa Eurostars-2, actuacion Interempresas Internacional), Spanish Ministerio de Ciencia, Innovacion y Universidades (ref. CIIP-20192020). Rafael Ortiz-Ramon was supported by grant ACIF/2015/078 from the Conselleria d'Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana (Spain). Document es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Physica Medica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Radiomics es_ES
dc.subject Texture analysis es_ES
dc.subject Brain tumors es_ES
dc.subject Magnetic resonance imaging es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ejmp.2020.06.016 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//CIIP-20192020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNCAD00%2F19%2F085//Proyecto 4DTools: nuevas técnicas y biomarcadores para diagnóstico-pronóstico de patologías de la aorta ascendente a través de técnicas de imagen médica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2015%2F078//AYUDA VALI+D PREDOCTORAL-ORTIZ RAMON (PROYECTO: ANALISIS DE IMAGEN DE RESONANCIA MAGNETICA PARA EL SEGUIMIENTO DE LA REGENERACION AXONAL DEL SISTEMA NERVIOSO CENTRAL MEDIANTE LA IMPLANTACION DE CELULAS NEURALES Y BIOMATERIALES EN RATAS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AEST%2F2017%2F013//AYUDA ESTANCIAS EN EMPRESAS GVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AEST%2F2018%2F021//INGENIERIA CIVIL, INGENIERIA ELECTRICA, INGENIERIA ELECTRONICA, INGENIERIA INFORMATICA, INGENIERIA INDUSTRIAL, INGENIERIA QUIMICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AEST%2F2019%2F037//AYUDA ESTANCIA EN EMPRESA EXPLORACIONES RADIOLOGICAS ESPECIALES S.L. "CARACTERIZACION DE LA CARDIOMIOPATIA HIPERTROFICA Y DEL CORAZON DE ATLETA"/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Ortiz-Ramón, R.; Ruiz-España, S.; Molla-Olmos, E.; Moratal, D. (2020). Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics approach. Physica Medica. 76:44-54. https://doi.org/10.1016/j.ejmp.2020.06.016 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ejmp.2020.06.016 es_ES
dc.description.upvformatpinicio 44 es_ES
dc.description.upvformatpfin 54 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 76 es_ES
dc.identifier.pmid 32593138 es_ES
dc.relation.pasarela S\427864 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA Y EMPRESA es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem