- -

A web-based support system for biometeorological research

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


A web-based support system for biometeorological research

Show full item record

Arroquia-Cuadros, B.; Marqués-Mateu, Á.; Sebastiá Tarín, L.; Fdez-Arroyabe, P. (2021). A web-based support system for biometeorological research. International Journal of Biometeorology. 65(8):1313-1323. https://doi.org/10.1007/s00484-020-01985-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/178246

Files in this item

Item Metadata

Title: A web-based support system for biometeorological research
Author: Arroquia-Cuadros, Benjamin Marqués-Mateu, Ángel Sebastiá Tarín, Laura Fdez-Arroyabe, Pablo
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
[EN] Data are the fundamental building blocks to conduct scientific studies that seek to understand natural phenomena in space and time. The notion of data processing is ubiquitous and nearly operates in any project that ...[+]
Subjects: Biometeorology , Geomatics , Geoprocessing , Data science , Webmapping , ETL
Copyrigths: Cerrado
International Journal of Biometeorology. (issn: 0020-7128 )
DOI: 10.1007/s00484-020-01985-y
Publisher version: https://doi.org/10.1007/s00484-020-01985-y
Type: Artículo


Aime MD, Lioy A, Pomi PC, Vallini M (2011) Security plans for SaaS. In: Agrawal D et al (eds) New frontiers in information and software as services. Service and application design challenges in the cloud. LNBIP 74. Springer, Berlin, pp 81–111

Bermudez L (2017) New frontiers on open standards for geo-spatial science. Geo Spatial Inform Sci 20:126–133. https://doi.org/10.1080/10095020.2017.1325613

Bhat S (2018) Practical Docker with Python. Apress, Bangalore [+]
Aime MD, Lioy A, Pomi PC, Vallini M (2011) Security plans for SaaS. In: Agrawal D et al (eds) New frontiers in information and software as services. Service and application design challenges in the cloud. LNBIP 74. Springer, Berlin, pp 81–111

Bermudez L (2017) New frontiers on open standards for geo-spatial science. Geo Spatial Inform Sci 20:126–133. https://doi.org/10.1080/10095020.2017.1325613

Bhat S (2018) Practical Docker with Python. Apress, Bangalore

Borkar VR, Deshmukh K, Sarawagi S (2000) Automatically extracting structure from free text addresses. IEEE Data Eng Bull 23:27–32

Canfield DE, Ngombi-Pemba L, Hammarlund EU, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Asael D, Pierson-Wickmann AC, El Albani A (2013) Oxygen dynamics in the aftermath of the great oxidation of Earth’s atmosphere. Proc Natl Acad Sci U S A 110:16736–16741. https://doi.org/10.1073/pnas.1315570110

Chubukov LA (1956) Climate fundaments of climatotherapy [in Russian]. In: Basis of Climatotherapy, Vol. 1. Medical Ed., Moscow

Cook J (2017) Docker for data science. Apress, Santa Monica

Crikard P III (2014) Leaflet.js essentials. Packt Publishing, Birmingham

Crowe SA, Døssing LN, Beukes NJ, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538. https://doi.org/10.1038/nature12426

Dai J, Fdez-arroyabe P, Sheridan SC (2019) Foreword for IJB Special Issue on Asian Biometeorology Spring news from the eastern hemisphere: recent advances of biometeorology in Asia. Int J Biometeorol 63:563–568. https://doi.org/10.1007/s00484-019-01725-x

Dar U, Krosing H, Mlodgenski J, Roybal K (2015) PostgreSQL server programming, second edn. Packt Publishing, Birmingham

Das H, Barik RK, Dubey H, Roy DS (eds) (2019) Cloud computing for geospatial big data analytics. Springer, Cham

de Freitas CR, Grigorieva EA (2015) A comprehensive catalogue and classification of human thermal climate indices. Int J Biometeorol 59:109–120. https://doi.org/10.1007/s00484-014-0819-3

De Smith MJ, Goodchild MF, Longley P (2007) Geospatial analysis: a comprehensive guide to principles, techniques and software tools. Troubador Publishing Ltd, Leicester

ESA (2019) Copernicus. Europe’s eyes on Earth. https://www.esa.int/Applications/Observing_the_Earth/Copernicus. Accessed 25 October 2019

Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17:37–37. https://doi.org/10.1609/aimag.v17i3.1230

Fdez-Arroyabe P (2015) Climate change, local weather and customized early warning systems based on biometeorological indexes. IJEE 5(3). https://doi.org/10.17265/2159-581X/2015.03.002

Fdez-Arroyabe P, Roye D (2017) Co-creation and participatory design of big data infrastructures on the field of human health related climate services. In: Bhatt C, Dey N, Ashour A (eds) Internet of things and big data technologies for next generation healthcare. Studies in Big Data, vol 23. Springer, Cham, pp 199–226

Fdez-Arroyabe P, Lecha Estela L, Schimt F (2018) Digital divide, biometeorological data infrastructures and human vulnerability definition. Int J Biometeorol 62:733–740. https://doi.org/10.1007/s00484-017-1398-x

Fdez-Arroyabe P, Soliño Fernández D, Bilbatua Andrés J (2019) Work environment and healthcare: a biometeorological approach based on wearables. In: Dey N, Ashour A, Fong S, Bhatt CM (eds) Wearable and implantable medical devices applications and challenges. Vol. 7 in Advances in ubiquitous sensing applications for healthcare. Elsevier, London, pp 141–161

Fernández de Arroyabe P, Lecha Estela L (2008). Validación en el norte de España de dos sistemas de alerta sanitarios basados en la idea del contraste meteorológico extremo. In: Publicaciones de la Asoc. Española Climatología: El cambio climático regional y sus impactos, Serie A (6) Ponencia V. Tarragona. ISBN: 978–84–612-6051-5

GDAL/OGR contributors (2019) GDAL/OGR geospatial data abstraction software library. Open Source Geospatial Foundation. https://gdal.org. Accessed 20 October 2019

Hempelmann N, Ehbrecht C, Alvarez-Castro C, Brockmann P, Falk W, Hoffmann J, Kindermann S, Koziol B, Nangini C, Radanovics S, Vautard R, Yiou P (2018) Web processing service for climate impact and extreme weather event analyses. Flyingpigeon (Version 1.0). Comput Geosci 110:65–72. https://doi.org/10.1016/j.cageo.2017.10.004

Hillar G (2018) Django RESTful web services. Packt Publishing, Birmingham

Kitchin R (2014) The data revolution: big data, open data, data infrastructures and their consequences. SAGE, Los Angeles

Klein T, Samourkasidis A, Athanasiadis IN, Bellocchi G, Calanca P (2017) webXTREME: R-based web tool for calculating agroclimatic indices of extreme events. Comput Electron Agric 136:111–116. https://doi.org/10.1016/j.compag.2017.03.002

Lecha Estela LB (2018) Biometeorological forecasts for health surveillance and prevention of meteor-tropic effects. Int J Biometeorol 62:741–771. https://doi.org/10.1007/s00484-017-1405-2

Lecha Estela LB (2019) Pronósticos biometeorológicos. Citmatel, La Habana, p 2019

Lodovici M, Bigagli E (2011) Oxidative stress and air pollution exposure. J Toxicol 2011:487074–487079. https://doi.org/10.1155/2011/487074

McInerney D, Kempeneers P (2014) Open source geospatial tools. Springer, New York

Mehdipoor H, Vanos JK, Zurita-Milla R, Cao G (2017) Emerging technologies for biometeorology. Int J Biometeorol 61(1):81–88. https://doi.org/10.1007/s00484-017-1399-9

Miell I, Hobson A (2019) Docker in practice, Second edn. Manning Publications Co, Shelter Island

Mitchell T, GDAL contributors (2014) Geospatial power tools. Open source GDAL/OGR command line utilities. Locate Press, Chugiak

Mwange C, Mulaku GC, Siriba DN (2016) Technology trends for spatial data infrastructure in Africa. In Proceedings of the GSDI 15 World Conference, Taipei, Taiwan

NOAA (2019) NCEP Data Products GFS and GDAS. https://www.nco.ncep.noaa.gov/pmb/products/gfs/. Accessed 20 October 2019

Ovcharova VF (1963) Changes in the superior nervous activity and the gas exchange during the adaptation process of laboratory animals exposed to seasonal climate variations [in Russian]. In: Problems of Complex Climatology, USSR Academy of Sciences Ed., Moscow, pp 141-149

Qin CZ, Zhan LJ, Zhu AX (2014) How to apply the geospatial data abstraction library (GDAL) properly to parallel geospatial raster I/O? Trans GIS 18:950–957. https://doi.org/10.1111/tgis.12068

Reitz K, Schlusser T (2016) The Hitchhiker's guide to Python: best practices for development. O'Reilly Media, Inc., Sebastopol

Richards M (2015) Software architecture patterns. O'Reilly Media, Inc., Sebastopol

Risal A, Lima KJ, Bhattarai R, Yang JE, Noh H, Pathak R, Kim J (2018) Development of web-based WERM-S module for estimating spatially distributed rainfall erosivity index (EI30) using RADAR rainfall data. Catena 161:37–49. https://doi.org/10.1016/j.catena.2017.10.015

Robichaud PR, Elliot WJ, Pierson FB, Hall DE, Moffet CA (2007) Predicting postfire erosion and mitigation effectiveness with a web-based probabilistic erosion model. Catena 71:229–241. https://doi.org/10.1016/j.catena.2007.03.003

Rountree D, Castrillo I (2013) The basics of cloud computing: understanding the fundamentals of cloud computing in theory and practice. Elsevier, Waltham

Rutledge GK, Alpert J, Ebisuzaki W (2006) NOMADS: a climate and weather model archive at the National Oceanic and Atmospheric Administration. Bull Am Meteorol Soc 87:327–342. https://doi.org/10.1175/BAMS-87-3-327

Salazar Loor J, Fdez-Arroyabe P (2019) Aerial and satellite imagery and big data: blending old technologies with new trends. In: Dey N, Bhatt C, Ashour A (eds) Big data for remote sensing: visualization, Analysis and Interpretation. Springer, Cham, pp 39–59

Sample JT, Ioup E (2010) Tile-based geospatial information systems: principles and practices. Springer Science & Business Media, New York

Servon LJ (2002) Bridging the digital divide, technology, community and public policy. Wiley-Blackwell Publishing, Oxford

Soulignac V, Pinet F, Lambert E, Guichard L, Trouche L, Aubin S (2019) GECO, the French web-based application for knowledge management in agroecology. Comput Electron Agric 162:1050–1056. https://doi.org/10.1016/j.compag.2017.10.028

Stasch C, Foerster T, Autermann C, Pebesma E (2012) Spatio-temporal aggregation of European air quality observations in the sensor web. Comput Geosci 47:111–118. https://doi.org/10.1016/j.cageo.2011.11.008

Suryanto W, Irnaka TM (2016) Web-based application for inverting one-dimensional magnetotelluric data using Python. Comput Geosci 96:77–86. https://doi.org/10.1016/j.cageo.2016.08.006

Vance TC, Merati N, Yang C, Yuan M (eds) (2016) Cloud computing in ocean and atmospheric sciences. Elsevier, London

Villar A, Zarrabeitia MT, Fdez-Arroyabe P, Santurtún A (2018) Integrating and analyzing medical and environmental data using ETL and business intelligence tools. Int J Biometeorol 62:1085–1095. https://doi.org/10.1007/s00484-018-1511-9

Voronin IM (1954) Experimental study of the effects of climatotherapy in human organism [in Russian]. In: Proceedings of the 2nd Interdisciplinary Conference on Applications of Climatotherapy. Moscow, November; 25:27

Wang XZ, Zhang HM, Zhao JH, Lin QH, Zhou YC, Li JH (2015) An interactive web-based service analysis framework for remote sensing cloud computing. ISPRS Annals II-4(W2):43–50. https://doi.org/10.5194/isprsannals-II-4-W2-43-2015

Wang W, Cui Y, Luo Y, Li Z, Tan J (2019) Web-based decision support system for canal irrigation management. Comput Electron Agric 161:312–321. https://doi.org/10.1016/j.compag.2017.11.018

Warschauer M (2004) Technology and social inclusion. Rethinking the digital divide. The MIT Press, Massachusetts

Yang C, Goodchild M, Huang Q, Nebert D, Raskin R, Xu Y, Bambacus M, Fay D (2011) Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? Int J Digit Earth 4:305–329. https://doi.org/10.1080/17538947.2011.587547




This item appears in the following Collection(s)

Show full item record