- -

A web-based support system for biometeorological research

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A web-based support system for biometeorological research

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arroquia-Cuadros, Benjamin es_ES
dc.contributor.author Marqués-Mateu, Ángel es_ES
dc.contributor.author Sebastiá Tarín, Laura es_ES
dc.contributor.author Fdez-Arroyabe, Pablo es_ES
dc.date.accessioned 2021-12-13T19:00:13Z
dc.date.available 2021-12-13T19:00:13Z
dc.date.issued 2021-08 es_ES
dc.identifier.issn 0020-7128 es_ES
dc.identifier.uri http://hdl.handle.net/10251/178246
dc.description.abstract [EN] Data are the fundamental building blocks to conduct scientific studies that seek to understand natural phenomena in space and time. The notion of data processing is ubiquitous and nearly operates in any project that requires gaining insight from the data. The increasing availability of information sources, data formats and download services offered to the users, makes it difficult to reuse or exploit the potential of those new resources in multiple scientific fields. In this paper, we present a spatial extract-transform-load (spatial-ETL) approach for downloading atmospheric datasets in order to produce new biometeorological indices and expose them publicly for reuse in research studies. The technologies and processes involved in our work are clearly defined in a context where the GDAL library and the Python programming language are key elements for the development and implementation of the geoprocessing tools. Since the National Oceanic and Atmospheric Administration (NOAA) is the source of information, the ETL process is executed each time this service publishes an updated atmospheric prediction model, thus obtaining different forecasts for spatial and temporal analyses. As a result, we present a web application intended for downloading these newly created datasets after processing, and visualising interactive web maps with the outcomes resulting from a number of geoprocessing tasks. We also elaborate on all functions and technologies used for the design of those processes, with emphasis on the optimisation of the resources as implemented in cloud services es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof International Journal of Biometeorology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biometeorology es_ES
dc.subject Geomatics es_ES
dc.subject Geoprocessing es_ES
dc.subject Data science es_ES
dc.subject Webmapping es_ES
dc.subject ETL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title A web-based support system for biometeorological research es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00484-020-01985-y es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Arroquia-Cuadros, B.; Marqués-Mateu, Á.; Sebastiá Tarín, L.; Fdez-Arroyabe, P. (2021). A web-based support system for biometeorological research. International Journal of Biometeorology. 65(8):1313-1323. https://doi.org/10.1007/s00484-020-01985-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00484-020-01985-y es_ES
dc.description.upvformatpinicio 1313 es_ES
dc.description.upvformatpfin 1323 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 32789557 es_ES
dc.relation.pasarela S\417449 es_ES
dc.description.references Aime MD, Lioy A, Pomi PC, Vallini M (2011) Security plans for SaaS. In: Agrawal D et al (eds) New frontiers in information and software as services. Service and application design challenges in the cloud. LNBIP 74. Springer, Berlin, pp 81–111 es_ES
dc.description.references Bermudez L (2017) New frontiers on open standards for geo-spatial science. Geo Spatial Inform Sci 20:126–133. https://doi.org/10.1080/10095020.2017.1325613 es_ES
dc.description.references Bhat S (2018) Practical Docker with Python. Apress, Bangalore es_ES
dc.description.references Borkar VR, Deshmukh K, Sarawagi S (2000) Automatically extracting structure from free text addresses. IEEE Data Eng Bull 23:27–32 es_ES
dc.description.references Canfield DE, Ngombi-Pemba L, Hammarlund EU, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Asael D, Pierson-Wickmann AC, El Albani A (2013) Oxygen dynamics in the aftermath of the great oxidation of Earth’s atmosphere. Proc Natl Acad Sci U S A 110:16736–16741. https://doi.org/10.1073/pnas.1315570110 es_ES
dc.description.references Chubukov LA (1956) Climate fundaments of climatotherapy [in Russian]. In: Basis of Climatotherapy, Vol. 1. Medical Ed., Moscow es_ES
dc.description.references Cook J (2017) Docker for data science. Apress, Santa Monica es_ES
dc.description.references Crikard P III (2014) Leaflet.js essentials. Packt Publishing, Birmingham es_ES
dc.description.references Crowe SA, Døssing LN, Beukes NJ, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538. https://doi.org/10.1038/nature12426 es_ES
dc.description.references Dai J, Fdez-arroyabe P, Sheridan SC (2019) Foreword for IJB Special Issue on Asian Biometeorology Spring news from the eastern hemisphere: recent advances of biometeorology in Asia. Int J Biometeorol 63:563–568. https://doi.org/10.1007/s00484-019-01725-x es_ES
dc.description.references Dar U, Krosing H, Mlodgenski J, Roybal K (2015) PostgreSQL server programming, second edn. Packt Publishing, Birmingham es_ES
dc.description.references Das H, Barik RK, Dubey H, Roy DS (eds) (2019) Cloud computing for geospatial big data analytics. Springer, Cham es_ES
dc.description.references de Freitas CR, Grigorieva EA (2015) A comprehensive catalogue and classification of human thermal climate indices. Int J Biometeorol 59:109–120. https://doi.org/10.1007/s00484-014-0819-3 es_ES
dc.description.references De Smith MJ, Goodchild MF, Longley P (2007) Geospatial analysis: a comprehensive guide to principles, techniques and software tools. Troubador Publishing Ltd, Leicester es_ES
dc.description.references ESA (2019) Copernicus. Europe’s eyes on Earth. https://www.esa.int/Applications/Observing_the_Earth/Copernicus. Accessed 25 October 2019 es_ES
dc.description.references Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17:37–37. https://doi.org/10.1609/aimag.v17i3.1230 es_ES
dc.description.references Fdez-Arroyabe P (2015) Climate change, local weather and customized early warning systems based on biometeorological indexes. IJEE 5(3). https://doi.org/10.17265/2159-581X/2015.03.002 es_ES
dc.description.references Fdez-Arroyabe P, Roye D (2017) Co-creation and participatory design of big data infrastructures on the field of human health related climate services. In: Bhatt C, Dey N, Ashour A (eds) Internet of things and big data technologies for next generation healthcare. Studies in Big Data, vol 23. Springer, Cham, pp 199–226 es_ES
dc.description.references Fdez-Arroyabe P, Lecha Estela L, Schimt F (2018) Digital divide, biometeorological data infrastructures and human vulnerability definition. Int J Biometeorol 62:733–740. https://doi.org/10.1007/s00484-017-1398-x es_ES
dc.description.references Fdez-Arroyabe P, Soliño Fernández D, Bilbatua Andrés J (2019) Work environment and healthcare: a biometeorological approach based on wearables. In: Dey N, Ashour A, Fong S, Bhatt CM (eds) Wearable and implantable medical devices applications and challenges. Vol. 7 in Advances in ubiquitous sensing applications for healthcare. Elsevier, London, pp 141–161 es_ES
dc.description.references Fernández de Arroyabe P, Lecha Estela L (2008). Validación en el norte de España de dos sistemas de alerta sanitarios basados en la idea del contraste meteorológico extremo. In: Publicaciones de la Asoc. Española Climatología: El cambio climático regional y sus impactos, Serie A (6) Ponencia V. Tarragona. ISBN: 978–84–612-6051-5 es_ES
dc.description.references GDAL/OGR contributors (2019) GDAL/OGR geospatial data abstraction software library. Open Source Geospatial Foundation. https://gdal.org. Accessed 20 October 2019 es_ES
dc.description.references Hempelmann N, Ehbrecht C, Alvarez-Castro C, Brockmann P, Falk W, Hoffmann J, Kindermann S, Koziol B, Nangini C, Radanovics S, Vautard R, Yiou P (2018) Web processing service for climate impact and extreme weather event analyses. Flyingpigeon (Version 1.0). Comput Geosci 110:65–72. https://doi.org/10.1016/j.cageo.2017.10.004 es_ES
dc.description.references Hillar G (2018) Django RESTful web services. Packt Publishing, Birmingham es_ES
dc.description.references Kitchin R (2014) The data revolution: big data, open data, data infrastructures and their consequences. SAGE, Los Angeles es_ES
dc.description.references Klein T, Samourkasidis A, Athanasiadis IN, Bellocchi G, Calanca P (2017) webXTREME: R-based web tool for calculating agroclimatic indices of extreme events. Comput Electron Agric 136:111–116. https://doi.org/10.1016/j.compag.2017.03.002 es_ES
dc.description.references Lecha Estela LB (2018) Biometeorological forecasts for health surveillance and prevention of meteor-tropic effects. Int J Biometeorol 62:741–771. https://doi.org/10.1007/s00484-017-1405-2 es_ES
dc.description.references Lecha Estela LB (2019) Pronósticos biometeorológicos. Citmatel, La Habana, p 2019 es_ES
dc.description.references Lodovici M, Bigagli E (2011) Oxidative stress and air pollution exposure. J Toxicol 2011:487074–487079. https://doi.org/10.1155/2011/487074 es_ES
dc.description.references McInerney D, Kempeneers P (2014) Open source geospatial tools. Springer, New York es_ES
dc.description.references Mehdipoor H, Vanos JK, Zurita-Milla R, Cao G (2017) Emerging technologies for biometeorology. Int J Biometeorol 61(1):81–88. https://doi.org/10.1007/s00484-017-1399-9 es_ES
dc.description.references Miell I, Hobson A (2019) Docker in practice, Second edn. Manning Publications Co, Shelter Island es_ES
dc.description.references Mitchell T, GDAL contributors (2014) Geospatial power tools. Open source GDAL/OGR command line utilities. Locate Press, Chugiak es_ES
dc.description.references Mwange C, Mulaku GC, Siriba DN (2016) Technology trends for spatial data infrastructure in Africa. In Proceedings of the GSDI 15 World Conference, Taipei, Taiwan es_ES
dc.description.references NOAA (2019) NCEP Data Products GFS and GDAS. https://www.nco.ncep.noaa.gov/pmb/products/gfs/. Accessed 20 October 2019 es_ES
dc.description.references Ovcharova VF (1963) Changes in the superior nervous activity and the gas exchange during the adaptation process of laboratory animals exposed to seasonal climate variations [in Russian]. In: Problems of Complex Climatology, USSR Academy of Sciences Ed., Moscow, pp 141-149 es_ES
dc.description.references Qin CZ, Zhan LJ, Zhu AX (2014) How to apply the geospatial data abstraction library (GDAL) properly to parallel geospatial raster I/O? Trans GIS 18:950–957. https://doi.org/10.1111/tgis.12068 es_ES
dc.description.references Reitz K, Schlusser T (2016) The Hitchhiker's guide to Python: best practices for development. O'Reilly Media, Inc., Sebastopol es_ES
dc.description.references Richards M (2015) Software architecture patterns. O'Reilly Media, Inc., Sebastopol es_ES
dc.description.references Risal A, Lima KJ, Bhattarai R, Yang JE, Noh H, Pathak R, Kim J (2018) Development of web-based WERM-S module for estimating spatially distributed rainfall erosivity index (EI30) using RADAR rainfall data. Catena 161:37–49. https://doi.org/10.1016/j.catena.2017.10.015 es_ES
dc.description.references Robichaud PR, Elliot WJ, Pierson FB, Hall DE, Moffet CA (2007) Predicting postfire erosion and mitigation effectiveness with a web-based probabilistic erosion model. Catena 71:229–241. https://doi.org/10.1016/j.catena.2007.03.003 es_ES
dc.description.references Rountree D, Castrillo I (2013) The basics of cloud computing: understanding the fundamentals of cloud computing in theory and practice. Elsevier, Waltham es_ES
dc.description.references Rutledge GK, Alpert J, Ebisuzaki W (2006) NOMADS: a climate and weather model archive at the National Oceanic and Atmospheric Administration. Bull Am Meteorol Soc 87:327–342. https://doi.org/10.1175/BAMS-87-3-327 es_ES
dc.description.references Salazar Loor J, Fdez-Arroyabe P (2019) Aerial and satellite imagery and big data: blending old technologies with new trends. In: Dey N, Bhatt C, Ashour A (eds) Big data for remote sensing: visualization, Analysis and Interpretation. Springer, Cham, pp 39–59 es_ES
dc.description.references Sample JT, Ioup E (2010) Tile-based geospatial information systems: principles and practices. Springer Science & Business Media, New York es_ES
dc.description.references Servon LJ (2002) Bridging the digital divide, technology, community and public policy. Wiley-Blackwell Publishing, Oxford es_ES
dc.description.references Soulignac V, Pinet F, Lambert E, Guichard L, Trouche L, Aubin S (2019) GECO, the French web-based application for knowledge management in agroecology. Comput Electron Agric 162:1050–1056. https://doi.org/10.1016/j.compag.2017.10.028 es_ES
dc.description.references Stasch C, Foerster T, Autermann C, Pebesma E (2012) Spatio-temporal aggregation of European air quality observations in the sensor web. Comput Geosci 47:111–118. https://doi.org/10.1016/j.cageo.2011.11.008 es_ES
dc.description.references Suryanto W, Irnaka TM (2016) Web-based application for inverting one-dimensional magnetotelluric data using Python. Comput Geosci 96:77–86. https://doi.org/10.1016/j.cageo.2016.08.006 es_ES
dc.description.references Vance TC, Merati N, Yang C, Yuan M (eds) (2016) Cloud computing in ocean and atmospheric sciences. Elsevier, London es_ES
dc.description.references Villar A, Zarrabeitia MT, Fdez-Arroyabe P, Santurtún A (2018) Integrating and analyzing medical and environmental data using ETL and business intelligence tools. Int J Biometeorol 62:1085–1095. https://doi.org/10.1007/s00484-018-1511-9 es_ES
dc.description.references Voronin IM (1954) Experimental study of the effects of climatotherapy in human organism [in Russian]. In: Proceedings of the 2nd Interdisciplinary Conference on Applications of Climatotherapy. Moscow, November; 25:27 es_ES
dc.description.references Wang XZ, Zhang HM, Zhao JH, Lin QH, Zhou YC, Li JH (2015) An interactive web-based service analysis framework for remote sensing cloud computing. ISPRS Annals II-4(W2):43–50. https://doi.org/10.5194/isprsannals-II-4-W2-43-2015 es_ES
dc.description.references Wang W, Cui Y, Luo Y, Li Z, Tan J (2019) Web-based decision support system for canal irrigation management. Comput Electron Agric 161:312–321. https://doi.org/10.1016/j.compag.2017.11.018 es_ES
dc.description.references Warschauer M (2004) Technology and social inclusion. Rethinking the digital divide. The MIT Press, Massachusetts es_ES
dc.description.references Yang C, Goodchild M, Huang Q, Nebert D, Raskin R, Xu Y, Bambacus M, Fay D (2011) Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? Int J Digit Earth 4:305–329. https://doi.org/10.1080/17538947.2011.587547 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem