Mostrar el registro sencillo del ítem
dc.contributor.author | Arroquia-Cuadros, Benjamin | es_ES |
dc.contributor.author | Marqués-Mateu, Ángel | es_ES |
dc.contributor.author | Sebastiá Tarín, Laura | es_ES |
dc.contributor.author | Fdez-Arroyabe, Pablo | es_ES |
dc.date.accessioned | 2021-12-13T19:00:13Z | |
dc.date.available | 2021-12-13T19:00:13Z | |
dc.date.issued | 2021-08 | es_ES |
dc.identifier.issn | 0020-7128 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/178246 | |
dc.description.abstract | [EN] Data are the fundamental building blocks to conduct scientific studies that seek to understand natural phenomena in space and time. The notion of data processing is ubiquitous and nearly operates in any project that requires gaining insight from the data. The increasing availability of information sources, data formats and download services offered to the users, makes it difficult to reuse or exploit the potential of those new resources in multiple scientific fields. In this paper, we present a spatial extract-transform-load (spatial-ETL) approach for downloading atmospheric datasets in order to produce new biometeorological indices and expose them publicly for reuse in research studies. The technologies and processes involved in our work are clearly defined in a context where the GDAL library and the Python programming language are key elements for the development and implementation of the geoprocessing tools. Since the National Oceanic and Atmospheric Administration (NOAA) is the source of information, the ETL process is executed each time this service publishes an updated atmospheric prediction model, thus obtaining different forecasts for spatial and temporal analyses. As a result, we present a web application intended for downloading these newly created datasets after processing, and visualising interactive web maps with the outcomes resulting from a number of geoprocessing tasks. We also elaborate on all functions and technologies used for the design of those processes, with emphasis on the optimisation of the resources as implemented in cloud services | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | International Journal of Biometeorology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biometeorology | es_ES |
dc.subject | Geomatics | es_ES |
dc.subject | Geoprocessing | es_ES |
dc.subject | Data science | es_ES |
dc.subject | Webmapping | es_ES |
dc.subject | ETL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | A web-based support system for biometeorological research | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00484-020-01985-y | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Arroquia-Cuadros, B.; Marqués-Mateu, Á.; Sebastiá Tarín, L.; Fdez-Arroyabe, P. (2021). A web-based support system for biometeorological research. International Journal of Biometeorology. 65(8):1313-1323. https://doi.org/10.1007/s00484-020-01985-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00484-020-01985-y | es_ES |
dc.description.upvformatpinicio | 1313 | es_ES |
dc.description.upvformatpfin | 1323 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 65 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.pmid | 32789557 | es_ES |
dc.relation.pasarela | S\417449 | es_ES |
dc.description.references | Aime MD, Lioy A, Pomi PC, Vallini M (2011) Security plans for SaaS. In: Agrawal D et al (eds) New frontiers in information and software as services. Service and application design challenges in the cloud. LNBIP 74. Springer, Berlin, pp 81–111 | es_ES |
dc.description.references | Bermudez L (2017) New frontiers on open standards for geo-spatial science. Geo Spatial Inform Sci 20:126–133. https://doi.org/10.1080/10095020.2017.1325613 | es_ES |
dc.description.references | Bhat S (2018) Practical Docker with Python. Apress, Bangalore | es_ES |
dc.description.references | Borkar VR, Deshmukh K, Sarawagi S (2000) Automatically extracting structure from free text addresses. IEEE Data Eng Bull 23:27–32 | es_ES |
dc.description.references | Canfield DE, Ngombi-Pemba L, Hammarlund EU, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Asael D, Pierson-Wickmann AC, El Albani A (2013) Oxygen dynamics in the aftermath of the great oxidation of Earth’s atmosphere. Proc Natl Acad Sci U S A 110:16736–16741. https://doi.org/10.1073/pnas.1315570110 | es_ES |
dc.description.references | Chubukov LA (1956) Climate fundaments of climatotherapy [in Russian]. In: Basis of Climatotherapy, Vol. 1. Medical Ed., Moscow | es_ES |
dc.description.references | Cook J (2017) Docker for data science. Apress, Santa Monica | es_ES |
dc.description.references | Crikard P III (2014) Leaflet.js essentials. Packt Publishing, Birmingham | es_ES |
dc.description.references | Crowe SA, Døssing LN, Beukes NJ, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538. https://doi.org/10.1038/nature12426 | es_ES |
dc.description.references | Dai J, Fdez-arroyabe P, Sheridan SC (2019) Foreword for IJB Special Issue on Asian Biometeorology Spring news from the eastern hemisphere: recent advances of biometeorology in Asia. Int J Biometeorol 63:563–568. https://doi.org/10.1007/s00484-019-01725-x | es_ES |
dc.description.references | Dar U, Krosing H, Mlodgenski J, Roybal K (2015) PostgreSQL server programming, second edn. Packt Publishing, Birmingham | es_ES |
dc.description.references | Das H, Barik RK, Dubey H, Roy DS (eds) (2019) Cloud computing for geospatial big data analytics. Springer, Cham | es_ES |
dc.description.references | de Freitas CR, Grigorieva EA (2015) A comprehensive catalogue and classification of human thermal climate indices. Int J Biometeorol 59:109–120. https://doi.org/10.1007/s00484-014-0819-3 | es_ES |
dc.description.references | De Smith MJ, Goodchild MF, Longley P (2007) Geospatial analysis: a comprehensive guide to principles, techniques and software tools. Troubador Publishing Ltd, Leicester | es_ES |
dc.description.references | ESA (2019) Copernicus. Europe’s eyes on Earth. https://www.esa.int/Applications/Observing_the_Earth/Copernicus. Accessed 25 October 2019 | es_ES |
dc.description.references | Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17:37–37. https://doi.org/10.1609/aimag.v17i3.1230 | es_ES |
dc.description.references | Fdez-Arroyabe P (2015) Climate change, local weather and customized early warning systems based on biometeorological indexes. IJEE 5(3). https://doi.org/10.17265/2159-581X/2015.03.002 | es_ES |
dc.description.references | Fdez-Arroyabe P, Roye D (2017) Co-creation and participatory design of big data infrastructures on the field of human health related climate services. In: Bhatt C, Dey N, Ashour A (eds) Internet of things and big data technologies for next generation healthcare. Studies in Big Data, vol 23. Springer, Cham, pp 199–226 | es_ES |
dc.description.references | Fdez-Arroyabe P, Lecha Estela L, Schimt F (2018) Digital divide, biometeorological data infrastructures and human vulnerability definition. Int J Biometeorol 62:733–740. https://doi.org/10.1007/s00484-017-1398-x | es_ES |
dc.description.references | Fdez-Arroyabe P, Soliño Fernández D, Bilbatua Andrés J (2019) Work environment and healthcare: a biometeorological approach based on wearables. In: Dey N, Ashour A, Fong S, Bhatt CM (eds) Wearable and implantable medical devices applications and challenges. Vol. 7 in Advances in ubiquitous sensing applications for healthcare. Elsevier, London, pp 141–161 | es_ES |
dc.description.references | Fernández de Arroyabe P, Lecha Estela L (2008). Validación en el norte de España de dos sistemas de alerta sanitarios basados en la idea del contraste meteorológico extremo. In: Publicaciones de la Asoc. Española Climatología: El cambio climático regional y sus impactos, Serie A (6) Ponencia V. Tarragona. ISBN: 978–84–612-6051-5 | es_ES |
dc.description.references | GDAL/OGR contributors (2019) GDAL/OGR geospatial data abstraction software library. Open Source Geospatial Foundation. https://gdal.org. Accessed 20 October 2019 | es_ES |
dc.description.references | Hempelmann N, Ehbrecht C, Alvarez-Castro C, Brockmann P, Falk W, Hoffmann J, Kindermann S, Koziol B, Nangini C, Radanovics S, Vautard R, Yiou P (2018) Web processing service for climate impact and extreme weather event analyses. Flyingpigeon (Version 1.0). Comput Geosci 110:65–72. https://doi.org/10.1016/j.cageo.2017.10.004 | es_ES |
dc.description.references | Hillar G (2018) Django RESTful web services. Packt Publishing, Birmingham | es_ES |
dc.description.references | Kitchin R (2014) The data revolution: big data, open data, data infrastructures and their consequences. SAGE, Los Angeles | es_ES |
dc.description.references | Klein T, Samourkasidis A, Athanasiadis IN, Bellocchi G, Calanca P (2017) webXTREME: R-based web tool for calculating agroclimatic indices of extreme events. Comput Electron Agric 136:111–116. https://doi.org/10.1016/j.compag.2017.03.002 | es_ES |
dc.description.references | Lecha Estela LB (2018) Biometeorological forecasts for health surveillance and prevention of meteor-tropic effects. Int J Biometeorol 62:741–771. https://doi.org/10.1007/s00484-017-1405-2 | es_ES |
dc.description.references | Lecha Estela LB (2019) Pronósticos biometeorológicos. Citmatel, La Habana, p 2019 | es_ES |
dc.description.references | Lodovici M, Bigagli E (2011) Oxidative stress and air pollution exposure. J Toxicol 2011:487074–487079. https://doi.org/10.1155/2011/487074 | es_ES |
dc.description.references | McInerney D, Kempeneers P (2014) Open source geospatial tools. Springer, New York | es_ES |
dc.description.references | Mehdipoor H, Vanos JK, Zurita-Milla R, Cao G (2017) Emerging technologies for biometeorology. Int J Biometeorol 61(1):81–88. https://doi.org/10.1007/s00484-017-1399-9 | es_ES |
dc.description.references | Miell I, Hobson A (2019) Docker in practice, Second edn. Manning Publications Co, Shelter Island | es_ES |
dc.description.references | Mitchell T, GDAL contributors (2014) Geospatial power tools. Open source GDAL/OGR command line utilities. Locate Press, Chugiak | es_ES |
dc.description.references | Mwange C, Mulaku GC, Siriba DN (2016) Technology trends for spatial data infrastructure in Africa. In Proceedings of the GSDI 15 World Conference, Taipei, Taiwan | es_ES |
dc.description.references | NOAA (2019) NCEP Data Products GFS and GDAS. https://www.nco.ncep.noaa.gov/pmb/products/gfs/. Accessed 20 October 2019 | es_ES |
dc.description.references | Ovcharova VF (1963) Changes in the superior nervous activity and the gas exchange during the adaptation process of laboratory animals exposed to seasonal climate variations [in Russian]. In: Problems of Complex Climatology, USSR Academy of Sciences Ed., Moscow, pp 141-149 | es_ES |
dc.description.references | Qin CZ, Zhan LJ, Zhu AX (2014) How to apply the geospatial data abstraction library (GDAL) properly to parallel geospatial raster I/O? Trans GIS 18:950–957. https://doi.org/10.1111/tgis.12068 | es_ES |
dc.description.references | Reitz K, Schlusser T (2016) The Hitchhiker's guide to Python: best practices for development. O'Reilly Media, Inc., Sebastopol | es_ES |
dc.description.references | Richards M (2015) Software architecture patterns. O'Reilly Media, Inc., Sebastopol | es_ES |
dc.description.references | Risal A, Lima KJ, Bhattarai R, Yang JE, Noh H, Pathak R, Kim J (2018) Development of web-based WERM-S module for estimating spatially distributed rainfall erosivity index (EI30) using RADAR rainfall data. Catena 161:37–49. https://doi.org/10.1016/j.catena.2017.10.015 | es_ES |
dc.description.references | Robichaud PR, Elliot WJ, Pierson FB, Hall DE, Moffet CA (2007) Predicting postfire erosion and mitigation effectiveness with a web-based probabilistic erosion model. Catena 71:229–241. https://doi.org/10.1016/j.catena.2007.03.003 | es_ES |
dc.description.references | Rountree D, Castrillo I (2013) The basics of cloud computing: understanding the fundamentals of cloud computing in theory and practice. Elsevier, Waltham | es_ES |
dc.description.references | Rutledge GK, Alpert J, Ebisuzaki W (2006) NOMADS: a climate and weather model archive at the National Oceanic and Atmospheric Administration. Bull Am Meteorol Soc 87:327–342. https://doi.org/10.1175/BAMS-87-3-327 | es_ES |
dc.description.references | Salazar Loor J, Fdez-Arroyabe P (2019) Aerial and satellite imagery and big data: blending old technologies with new trends. In: Dey N, Bhatt C, Ashour A (eds) Big data for remote sensing: visualization, Analysis and Interpretation. Springer, Cham, pp 39–59 | es_ES |
dc.description.references | Sample JT, Ioup E (2010) Tile-based geospatial information systems: principles and practices. Springer Science & Business Media, New York | es_ES |
dc.description.references | Servon LJ (2002) Bridging the digital divide, technology, community and public policy. Wiley-Blackwell Publishing, Oxford | es_ES |
dc.description.references | Soulignac V, Pinet F, Lambert E, Guichard L, Trouche L, Aubin S (2019) GECO, the French web-based application for knowledge management in agroecology. Comput Electron Agric 162:1050–1056. https://doi.org/10.1016/j.compag.2017.10.028 | es_ES |
dc.description.references | Stasch C, Foerster T, Autermann C, Pebesma E (2012) Spatio-temporal aggregation of European air quality observations in the sensor web. Comput Geosci 47:111–118. https://doi.org/10.1016/j.cageo.2011.11.008 | es_ES |
dc.description.references | Suryanto W, Irnaka TM (2016) Web-based application for inverting one-dimensional magnetotelluric data using Python. Comput Geosci 96:77–86. https://doi.org/10.1016/j.cageo.2016.08.006 | es_ES |
dc.description.references | Vance TC, Merati N, Yang C, Yuan M (eds) (2016) Cloud computing in ocean and atmospheric sciences. Elsevier, London | es_ES |
dc.description.references | Villar A, Zarrabeitia MT, Fdez-Arroyabe P, Santurtún A (2018) Integrating and analyzing medical and environmental data using ETL and business intelligence tools. Int J Biometeorol 62:1085–1095. https://doi.org/10.1007/s00484-018-1511-9 | es_ES |
dc.description.references | Voronin IM (1954) Experimental study of the effects of climatotherapy in human organism [in Russian]. In: Proceedings of the 2nd Interdisciplinary Conference on Applications of Climatotherapy. Moscow, November; 25:27 | es_ES |
dc.description.references | Wang XZ, Zhang HM, Zhao JH, Lin QH, Zhou YC, Li JH (2015) An interactive web-based service analysis framework for remote sensing cloud computing. ISPRS Annals II-4(W2):43–50. https://doi.org/10.5194/isprsannals-II-4-W2-43-2015 | es_ES |
dc.description.references | Wang W, Cui Y, Luo Y, Li Z, Tan J (2019) Web-based decision support system for canal irrigation management. Comput Electron Agric 161:312–321. https://doi.org/10.1016/j.compag.2017.11.018 | es_ES |
dc.description.references | Warschauer M (2004) Technology and social inclusion. Rethinking the digital divide. The MIT Press, Massachusetts | es_ES |
dc.description.references | Yang C, Goodchild M, Huang Q, Nebert D, Raskin R, Xu Y, Bambacus M, Fay D (2011) Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? Int J Digit Earth 4:305–329. https://doi.org/10.1080/17538947.2011.587547 | es_ES |