Mostrar el registro sencillo del ítem
dc.contributor.author | Cirugeda, Eva M. | es_ES |
dc.contributor.author | Calero, Sofia | es_ES |
dc.contributor.author | Plancha, Eva | es_ES |
dc.contributor.author | Enero, Jose | es_ES |
dc.contributor.author | Rieta, J J | es_ES |
dc.contributor.author | Alcaraz, Raul | es_ES |
dc.date.accessioned | 2021-12-20T08:39:34Z | |
dc.date.available | 2021-12-20T08:39:34Z | |
dc.date.issued | 2020-09-16 | es_ES |
dc.identifier.issn | 2325-887X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/178581 | |
dc.description.abstract | [EN] European Society of Cardiology guidelines recommend electrical cardioversion (ECV) as a rhythm control strategy in persistent atrial fibrillation (AF). Although ECV initially restores sinus rhythm (SR) in almost every patient, mid- and long-term AF recurrence rates are high, so that additional research is needed to anticipate ECV outcome and rationalize the management of AF patients. Although indices characterizing fibrillatory (f -) waves from surface lead V1, such as dominant frequency (DF), amplitude (FWA), and entropy, have reported good results, they discard the spatial information from the remaining leads. Hence, this work explores whether a multidimensional characterization approach of these parameters can improve ECV outcome prediction. The obtained results have shown that multidimensional FWA reported more balanced values of sensitivity and specificity, although the discriminant ability was similar in both cases. For DF, a similar outcome was also obtained. In contrast, multivariate entropy overcome discriminant ability of its univariate version by 5%, rightly anticipating result in more than 80% of ECV cases. Therefore, multidimensional entropy analysis seems to be able to quantify novel dynamics in the f-waves, which lead to a better ECV outcome prediction | es_ES |
dc.description.sponsorship | This research was funded by the projects DPI2017-83952C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from "Junta de Castilla La Mancha" and AICO/2019/036 from "Generalitat Valenciana" | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | CinC 2020. Computing in Cardiology, vol. 47 | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Multidimensional Characterization of the Atrial Activity to Predict Electrical Cardioversion Outcome of Persistent Atrial Fibrillation | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.22489/CinC.2020.377 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Cirugeda, EM.; Calero, S.; Plancha, E.; Enero, J.; Rieta, JJ.; Alcaraz, R. (2020). Multidimensional Characterization of the Atrial Activity to Predict Electrical Cardioversion Outcome of Persistent Atrial Fibrillation. IEEE. 1-4. https://doi.org/10.22489/CinC.2020.377 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 47th Computing in Cardiology Conference (CinC 2020) | es_ES |
dc.relation.conferencedate | Septiembre 13-16,2020 | es_ES |
dc.relation.conferenceplace | Rimini, Italia | es_ES |
dc.relation.publisherversion | https://doi.org/10.22489/CinC.2020.377 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 4 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\433030 | es_ES |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |