- -

Multidimensional Characterization of the Atrial Activity to Predict Electrical Cardioversion Outcome of Persistent Atrial Fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multidimensional Characterization of the Atrial Activity to Predict Electrical Cardioversion Outcome of Persistent Atrial Fibrillation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cirugeda, Eva M. es_ES
dc.contributor.author Calero, Sofia es_ES
dc.contributor.author Plancha, Eva es_ES
dc.contributor.author Enero, Jose es_ES
dc.contributor.author Rieta, J J es_ES
dc.contributor.author Alcaraz, Raul es_ES
dc.date.accessioned 2021-12-20T08:39:34Z
dc.date.available 2021-12-20T08:39:34Z
dc.date.issued 2020-09-16 es_ES
dc.identifier.issn 2325-887X es_ES
dc.identifier.uri http://hdl.handle.net/10251/178581
dc.description.abstract [EN] European Society of Cardiology guidelines recommend electrical cardioversion (ECV) as a rhythm control strategy in persistent atrial fibrillation (AF). Although ECV initially restores sinus rhythm (SR) in almost every patient, mid- and long-term AF recurrence rates are high, so that additional research is needed to anticipate ECV outcome and rationalize the management of AF patients. Although indices characterizing fibrillatory (f -) waves from surface lead V1, such as dominant frequency (DF), amplitude (FWA), and entropy, have reported good results, they discard the spatial information from the remaining leads. Hence, this work explores whether a multidimensional characterization approach of these parameters can improve ECV outcome prediction. The obtained results have shown that multidimensional FWA reported more balanced values of sensitivity and specificity, although the discriminant ability was similar in both cases. For DF, a similar outcome was also obtained. In contrast, multivariate entropy overcome discriminant ability of its univariate version by 5%, rightly anticipating result in more than 80% of ECV cases. Therefore, multidimensional entropy analysis seems to be able to quantify novel dynamics in the f-waves, which lead to a better ECV outcome prediction es_ES
dc.description.sponsorship This research was funded by the projects DPI2017-83952C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from "Junta de Castilla La Mancha" and AICO/2019/036 from "Generalitat Valenciana" es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof CinC 2020. Computing in Cardiology, vol. 47 es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Multidimensional Characterization of the Atrial Activity to Predict Electrical Cardioversion Outcome of Persistent Atrial Fibrillation es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.22489/CinC.2020.377 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Cirugeda, EM.; Calero, S.; Plancha, E.; Enero, J.; Rieta, JJ.; Alcaraz, R. (2020). Multidimensional Characterization of the Atrial Activity to Predict Electrical Cardioversion Outcome of Persistent Atrial Fibrillation. IEEE. 1-4. https://doi.org/10.22489/CinC.2020.377 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 47th Computing in Cardiology Conference (CinC 2020) es_ES
dc.relation.conferencedate Septiembre 13-16,2020 es_ES
dc.relation.conferenceplace Rimini, Italia es_ES
dc.relation.publisherversion https://doi.org/10.22489/CinC.2020.377 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\433030 es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem