Aineto, D.; Jiménez-Celorrio, S.; Onaindia De La Rivaherrera, E. (2020). Observation Decoding with Sensor Models: Recognition Tasks via Classical Planning. Association for the Advancement of Artificial Intelligence. 11-19. http://hdl.handle.net/10251/178902
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/178902
Title:
|
Observation Decoding with Sensor Models: Recognition Tasks via Classical Planning
|
Author:
|
Aineto, Diego
Jiménez-Celorrio, Sergio
Onaindia De La Rivaherrera, Eva
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
|
Issued date:
|
|
Abstract:
|
[EN] Observation decoding aims at discovering the underlyingstate trajectory of an acting agent from a sequence of observa-tions. This task is at the core of various recognition activitiesthat exploit planning as resolution ...[+]
[EN] Observation decoding aims at discovering the underlyingstate trajectory of an acting agent from a sequence of observa-tions. This task is at the core of various recognition activitiesthat exploit planning as resolution method but there is a gen-eral lack of formal approaches that reason about the partialinformation received by the observer or leverage the distri-bution of the observations emitted by the sensors. In this pa-per, we formalize the observation decoding task exploiting aprobabilistic sensor model to build more accurate hypothesisabout the behaviour of the acting agent. Our proposal extendsthe expressiveness of former recognition approaches by ac-cepting observation sequences where one observation of thesequence can represent the reading of more than one variable,thus enabling observations over actions and partially observ-able states simultaneously. We formulate the probability dis-tribution of the observations perceived when the agent per-forms an action or visits a state as a classical cost planningtask that is solved with an optimal planner. The experimentswill show that exploiting a sensor model increases the accu-racy of predicting the agent behaviour in four different con-texts
[-]
|
Copyrigths:
|
Reserva de todos los derechos
|
ISBN:
|
978-1-57735-824-4
|
Source:
|
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020).
|
Publisher:
|
Association for the Advancement of Artificial Intelligence
|
Publisher version:
|
https://ojs.aaai.org//index.php/ICAPS/issue/view/263
|
Conference name:
|
30th International Conference on Automated Planning and Scheduling (ICAPS 2020)
|
Conference place:
|
Nancy, France
|
Conference date:
|
Junio 14-19,2020
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/
info:eu-repo/grantAgreement/MECD//FPU16%2F03184/ES/FPU16%2F03184/
info:eu-repo/grantAgreement/MINECO//RYC-2015-18009/ES/RYC-2015-18009/
|
Thanks:
|
This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. D. Aineto is partially supported by the FPU16/03184 and S. Jimenez by the RYC15/18009
|
Type:
|
Comunicación en congreso
Capítulo de libro
|