Mostrar el registro sencillo del ítem
dc.contributor.author | Aineto, Diego![]() |
es_ES |
dc.contributor.author | Jiménez-Celorrio, Sergio![]() |
es_ES |
dc.contributor.author | Onaindia De La Rivaherrera, Eva![]() |
es_ES |
dc.date.accessioned | 2021-12-27T08:37:15Z | |
dc.date.available | 2021-12-27T08:37:15Z | |
dc.date.issued | 2020-06-19 | es_ES |
dc.identifier.isbn | 978-1-57735-824-4 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/178902 | |
dc.description.abstract | [EN] Observation decoding aims at discovering the underlyingstate trajectory of an acting agent from a sequence of observa-tions. This task is at the core of various recognition activitiesthat exploit planning as resolution method but there is a gen-eral lack of formal approaches that reason about the partialinformation received by the observer or leverage the distri-bution of the observations emitted by the sensors. In this pa-per, we formalize the observation decoding task exploiting aprobabilistic sensor model to build more accurate hypothesisabout the behaviour of the acting agent. Our proposal extendsthe expressiveness of former recognition approaches by ac-cepting observation sequences where one observation of thesequence can represent the reading of more than one variable,thus enabling observations over actions and partially observ-able states simultaneously. We formulate the probability dis-tribution of the observations perceived when the agent per-forms an action or visits a state as a classical cost planningtask that is solved with an optimal planner. The experimentswill show that exploiting a sensor model increases the accu-racy of predicting the agent behaviour in four different con-texts | es_ES |
dc.description.sponsorship | This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. D. Aineto is partially supported by the FPU16/03184 and S. Jimenez by the RYC15/18009 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Association for the Advancement of Artificial Intelligence | es_ES |
dc.relation.ispartof | Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Observation Decoding with Sensor Models: Recognition Tasks via Classical Planning | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F03184/ES/FPU16%2F03184/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2015-18009/ES/RYC-2015-18009/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Aineto, D.; Jiménez-Celorrio, S.; Onaindia De La Rivaherrera, E. (2020). Observation Decoding with Sensor Models: Recognition Tasks via Classical Planning. Association for the Advancement of Artificial Intelligence. 11-19. http://hdl.handle.net/10251/178902 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 30th International Conference on Automated Planning and Scheduling (ICAPS 2020) | es_ES |
dc.relation.conferencedate | Junio 14-19,2020 | es_ES |
dc.relation.conferenceplace | Nancy, France | es_ES |
dc.relation.publisherversion | https://ojs.aaai.org//index.php/ICAPS/issue/view/263 | es_ES |
dc.description.upvformatpinicio | 11 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\426551 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |