- -

An Experimental Review on Obstructive Sleep Apnea Detection Based on Heart Rate Variability and Machine Learning Techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Experimental Review on Obstructive Sleep Apnea Detection Based on Heart Rate Variability and Machine Learning Techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Padovano, Daniele es_ES
dc.contributor.author Martinez-Rodrigo, Arturo es_ES
dc.contributor.author Pastor, Jose M. es_ES
dc.contributor.author Rieta, J J es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.date.accessioned 2021-12-27T08:37:30Z
dc.date.available 2021-12-27T08:37:30Z
dc.date.issued 2020-10-30 es_ES
dc.identifier.isbn 978-1-7281-8803-4 es_ES
dc.identifier.uri http://hdl.handle.net/10251/178913
dc.description © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. es_ES
dc.description.abstract [EN] Obstructive sleep apnea (OSA) is a respiratory syndrome of high incidence in the general population and correlated with some cardiovascular diseases. Several techniques have been proposed in the last decades to find a surrogate method to polysomnography (PSG), the gold standard for the diagnosis of OSA. The present study comprises an experimental review on the state-of-the-art methods for OSA detection through the public Apnea-ECG database, which is available at PhysioNet. Precisely, traditional time-frequency domain features were extracted from the heart rate variability (HRV) signal, together with some common complexity measures. Given their ability to deal with real-world time series, two additional entropy-based measures were also tested, i.e., Rènyi and Tsallis entropies. Moreover, univariate and multivariate classifiers were applied, including diagnostic test, support vectors machine, and k-nearest neighbors. Ultimately, two sequential feature selection (SFS) algorithms were employed to reduce the computational cost of the resulting discriminant models. The major findings reported that multivariate classifiers reached similar results to those found in the literature. Moreover, univariate classification results suggested that the frequency domain features provided the best OSA detection, although a well-known entropy index also obtained a good performance. es_ES
dc.description.sponsorship This research has been supported by grants DPI2017-83952- C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/ 000411 from Junta de Comunidades de Castilla-la Mancha and AICO/2019/036 from Generalitat Valenciana. Moreover, Daniele Padovano has held graduate research scholarships from Escuela Politecnica de Cuenca and Instituto de Tecnolog ¿ ¿¿as Audiovisuales, University of Castilla-La Mancha es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof 2020 E-Health and Bioengineering Conference (EHB) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Obstructive sleep apnea es_ES
dc.subject Heart rate variability es_ES
dc.subject Entropy es_ES
dc.subject Lomb-Scargle periodogram es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title An Experimental Review on Obstructive Sleep Apnea Detection Based on Heart Rate Variability and Machine Learning Techniques es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/EHB50910.2020.9280302 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Padovano, D.; Martinez-Rodrigo, A.; Pastor, JM.; Rieta, JJ.; Alcaraz, R. (2020). An Experimental Review on Obstructive Sleep Apnea Detection Based on Heart Rate Variability and Machine Learning Techniques. IEEE. 1-4. https://doi.org/10.1109/EHB50910.2020.9280302 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 8th International Conference on e-Health and Bioengineering (EHB 2020) es_ES
dc.relation.conferencedate Octubre 29-30,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1109/EHB50910.2020.9280302 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\433201 es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem