Mostrar el registro sencillo del ítem
dc.contributor.author | Padovano, Daniele | es_ES |
dc.contributor.author | Martinez-Rodrigo, Arturo | es_ES |
dc.contributor.author | Pastor, Jose M. | es_ES |
dc.contributor.author | Rieta, J J | es_ES |
dc.contributor.author | Alcaraz, Raúl | es_ES |
dc.date.accessioned | 2021-12-27T08:37:30Z | |
dc.date.available | 2021-12-27T08:37:30Z | |
dc.date.issued | 2020-10-30 | es_ES |
dc.identifier.isbn | 978-1-7281-8803-4 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/178913 | |
dc.description | © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | es_ES |
dc.description.abstract | [EN] Obstructive sleep apnea (OSA) is a respiratory syndrome of high incidence in the general population and correlated with some cardiovascular diseases. Several techniques have been proposed in the last decades to find a surrogate method to polysomnography (PSG), the gold standard for the diagnosis of OSA. The present study comprises an experimental review on the state-of-the-art methods for OSA detection through the public Apnea-ECG database, which is available at PhysioNet. Precisely, traditional time-frequency domain features were extracted from the heart rate variability (HRV) signal, together with some common complexity measures. Given their ability to deal with real-world time series, two additional entropy-based measures were also tested, i.e., Rènyi and Tsallis entropies. Moreover, univariate and multivariate classifiers were applied, including diagnostic test, support vectors machine, and k-nearest neighbors. Ultimately, two sequential feature selection (SFS) algorithms were employed to reduce the computational cost of the resulting discriminant models. The major findings reported that multivariate classifiers reached similar results to those found in the literature. Moreover, univariate classification results suggested that the frequency domain features provided the best OSA detection, although a well-known entropy index also obtained a good performance. | es_ES |
dc.description.sponsorship | This research has been supported by grants DPI2017-83952- C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/ 000411 from Junta de Comunidades de Castilla-la Mancha and AICO/2019/036 from Generalitat Valenciana. Moreover, Daniele Padovano has held graduate research scholarships from Escuela Politecnica de Cuenca and Instituto de Tecnolog ¿ ¿¿as Audiovisuales, University of Castilla-La Mancha | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | 2020 E-Health and Bioengineering Conference (EHB) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Obstructive sleep apnea | es_ES |
dc.subject | Heart rate variability | es_ES |
dc.subject | Entropy | es_ES |
dc.subject | Lomb-Scargle periodogram | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | An Experimental Review on Obstructive Sleep Apnea Detection Based on Heart Rate Variability and Machine Learning Techniques | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1109/EHB50910.2020.9280302 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Padovano, D.; Martinez-Rodrigo, A.; Pastor, JM.; Rieta, JJ.; Alcaraz, R. (2020). An Experimental Review on Obstructive Sleep Apnea Detection Based on Heart Rate Variability and Machine Learning Techniques. IEEE. 1-4. https://doi.org/10.1109/EHB50910.2020.9280302 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 8th International Conference on e-Health and Bioengineering (EHB 2020) | es_ES |
dc.relation.conferencedate | Octubre 29-30,2020 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/EHB50910.2020.9280302 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 4 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\433201 | es_ES |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |