Cordero Barbero, A.; Villalba, EG.; Torregrosa Sánchez, JR.; Triguero-Navarro, P. (2021). Convergence and Stability of a Parametric Class of Iterative Schemes for Solving Nonlinear Systems. Mathematics. 9(1):1-18. https://doi.org/10.3390/math9010086
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179232
Title:
|
Convergence and Stability of a Parametric Class of Iterative Schemes for Solving Nonlinear Systems
|
Author:
|
Cordero Barbero, Alicia
Villalba, Eva G.
Torregrosa Sánchez, Juan Ramón
Triguero-Navarro, Paula
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
|
Issued date:
|
|
Abstract:
|
[EN] A new parametric class of iterative schemes for solving nonlinear systems is designed.
The third- or fourth-order convergence, depending on the values of the parameter being proven.
The analysis of the dynamical ...[+]
[EN] A new parametric class of iterative schemes for solving nonlinear systems is designed.
The third- or fourth-order convergence, depending on the values of the parameter being proven.
The analysis of the dynamical behavior of this class in the context of scalar nonlinear equations
is presented. This study gives us important information about the stability and reliability of the
members of the family. The numerical results obtained by applying different elements of the family
for solving the Hammerstein integral equation and the Fisher¿s equation confirm the theoretical
results.
[-]
|
Subjects:
|
Nonlinear system
,
Iterative method
,
Divided difference operator
,
Stability
,
Parameter
plane
,
Dynamical plane
|
Copyrigths:
|
Reconocimiento (by)
|
Source:
|
Mathematics. (eissn:
2227-7390
)
|
DOI:
|
10.3390/math9010086
|
Publisher:
|
MDPI AG
|
Publisher version:
|
https://doi.org/10.3390/math9010086
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
|
Thanks:
|
This research was supported by Ministerio de Ciencia, Innovacion y Universidades PGC2018-095896-BC22 (MCIU/AEI/FEDER, UE)
|
Type:
|
Artículo
|