- -

A front-fixing ETD numerical method for solving jump-diffusion American option pricing problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A front-fixing ETD numerical method for solving jump-diffusion American option pricing problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Company Rossi, Rafael es_ES
dc.contributor.author Egorova, Vera N. es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2022-01-10T19:31:59Z
dc.date.available 2022-01-10T19:31:59Z
dc.date.issued 2021-11 es_ES
dc.identifier.issn 0378-4754 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179436
dc.description.abstract [EN] American options prices under jump-diffusion models are determined by a free boundary partial integro-differential equation (PIDE) problem. In this paper, we propose a front-fixing exponential time differencing (FF-ETD) method composed of several steps. First, the free boundary is included into equation by applying the front-fixing transformation. Second, the resulting nonlinear PIDE is semi-discretized, that leads to a system of ordinary differential equations (ODEs). Third, a numerical solution of the system is constructed by using exponential time differencing (ETD) method and matrix quadrature rules. Finally, numerical analysis is provided to establish empirical stability conditions on step sizes. Numerical results show the efficiency and competitiveness of the FF-ETD method. (C) 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work has been partially supported by the Ministerio de Ciencia, Innovacion y Universidades, Spanish grant MTM2017-89664-P es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Mathematics and Computers in Simulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject American option pricing es_ES
dc.subject Front-fixing method es_ES
dc.subject Exponential time differencing es_ES
dc.subject Finite difference methods es_ES
dc.subject Experimental numerical analysis es_ES
dc.subject Gauss quadrature es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A front-fixing ETD numerical method for solving jump-diffusion American option pricing problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.matcom.2020.07.015 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Company Rossi, R.; Egorova, VN.; Jódar Sánchez, LA. (2021). A front-fixing ETD numerical method for solving jump-diffusion American option pricing problems. Mathematics and Computers in Simulation. 189:69-84. https://doi.org/10.1016/j.matcom.2020.07.015 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.matcom.2020.07.015 es_ES
dc.description.upvformatpinicio 69 es_ES
dc.description.upvformatpfin 84 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 189 es_ES
dc.relation.pasarela S\444020 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem