- -

An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images

Mostrar el registro completo del ítem

Del Amor, R.; Launet, L.; Colomer, A.; Moscardó, A.; Mosquera-Zamudio, A.; Monteagudo, C.; Naranjo Ornedo, V. (2021). An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images. Artificial Intelligence in Medicine. 121:1-12. https://doi.org/10.1016/j.artmed.2021.102197

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179752

Ficheros en el ítem

Metadatos del ítem

Título: An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images
Autor: del Amor, Rocío Launet, Laetitia Colomer, Adrián Moscardó, Anaïs Mosquera-Zamudio, Andrés Monteagudo, Carlos Naranjo Ornedo, Valeriana
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Melanoma is an aggressive neoplasm responsible for the majority of deaths from skin cancer. Specifically, spitzoid melanocytic tumors are one of the most challenging melanocytic lesions due to their ambiguous morphological ...[+]
Palabras clave: Spitzoid lesions , Attention convolutional neural network , Inductive transfer learning , Multiple instance learning , Histopathological whole-slide images
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Artificial Intelligence in Medicine. (issn: 0933-3657 )
DOI: 10.1016/j.artmed.2021.102197
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.artmed.2021.102197
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2020%2F030/
Agradecimientos:
We gratefully acknowledge the support from the Generalitat Valenciana (GVA) with the donation of the DGX A100 used for this work, action co-financed by the European Union through the Operational Program of the European ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem