- -

An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author del Amor, Rocío es_ES
dc.contributor.author Launet, Laetitia es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Moscardó, Anaïs es_ES
dc.contributor.author Mosquera-Zamudio, Andrés es_ES
dc.contributor.author Monteagudo, Carlos es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2022-01-17T19:26:59Z
dc.date.available 2022-01-17T19:26:59Z
dc.date.issued 2021-11 es_ES
dc.identifier.issn 0933-3657 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179752
dc.description.abstract [EN] Melanoma is an aggressive neoplasm responsible for the majority of deaths from skin cancer. Specifically, spitzoid melanocytic tumors are one of the most challenging melanocytic lesions due to their ambiguous morphological features. The gold standard for its diagnosis and prognosis is the analysis of skin biopsies. In this process, dermatopathologists visualize skin histology slides under a microscope, in a highly time-consuming and subjective task. In the last years, computer-aided diagnosis (CAD) systems have emerged as a promising tool that could support pathologists in daily clinical practice. Nevertheless, no automatic CAD systems have yet been proposed for the analysis of spitzoid lesions. Regarding common melanoma, no system allows both the selection of the tumor region and the prediction of the benign or malignant form in the diagnosis. Motivated by this, we propose a novel end-to-end weakly supervised deep learning model, based on inductive transfer learning with an improved convolutional neural network (CNN) to refine the embedding features of the latent space. The framework is composed of a source model in charge of finding the tumor patch-level patterns, and a target model focuses on the specific diagnosis of a biopsy. The latter retrains the backbone of the source model through a multiple instance learning workflow to obtain the biopsy-level scoring. To evaluate the performance of the proposed methods, we performed extensive experiments on a private skin database with spitzoid lesions. Test results achieved an accuracy of 0.9231 and 0.80 for the source and the target models, respectively. In addition, the heat map findings are directly in line with the clinicians' medical decision and even highlight, in some cases, patterns of interest that were overlooked by the pathologist. es_ES
dc.description.sponsorship We gratefully acknowledge the support from the Generalitat Valenciana (GVA) with the donation of the DGX A100 used for this work, action co-financed by the European Union through the Operational Program of the European Regional Development Fund of the Comunitat Valenciana 2014-2020 (IDIFEDER/2020/030) es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Artificial Intelligence in Medicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Spitzoid lesions es_ES
dc.subject Attention convolutional neural network es_ES
dc.subject Inductive transfer learning es_ES
dc.subject Multiple instance learning es_ES
dc.subject Histopathological whole-slide images es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.artmed.2021.102197 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2020%2F030/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Del Amor, R.; Launet, L.; Colomer, A.; Moscardó, A.; Mosquera-Zamudio, A.; Monteagudo, C.; Naranjo Ornedo, V. (2021). An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images. Artificial Intelligence in Medicine. 121:1-12. https://doi.org/10.1016/j.artmed.2021.102197 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.artmed.2021.102197 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 121 es_ES
dc.identifier.pmid 34763799 es_ES
dc.relation.pasarela S\449567 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem