- -

A deep embedded refined clustering approach for breast cancer distinction based on DNA methylation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A deep embedded refined clustering approach for breast cancer distinction based on DNA methylation

Show full item record

Del Amor, R.; Colomer, A.; Monteagudo, C.; Naranjo Ornedo, V. (2021). A deep embedded refined clustering approach for breast cancer distinction based on DNA methylation. Neural Computing and Applications. 1-13. https://doi.org/10.1007/s00521-021-06357-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179754

Files in this item

Item Metadata

Title: A deep embedded refined clustering approach for breast cancer distinction based on DNA methylation
Author: del Amor, Rocío Colomer, Adrián Monteagudo, Carlos Naranjo Ornedo, Valeriana
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
[EN] Epigenetic alterations have an important role in the development of several types of cancer. Epigenetic studies generate a large amount of data, which makes it essential to develop novel models capable of dealing with ...[+]
Subjects: Deep embedded refined clustering , Breast cancer , DNA methylation , Dimensionality reduction
Copyrigths: Reserva de todos los derechos
Source:
Neural Computing and Applications. (issn: 0941-0643 )
DOI: 10.1007/s00521-021-06357-0
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00521-021-06357-0
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//DPI2016-77869-C2-1-R//SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/
info:eu-repo/grantAgreement/EC/H2020/860627/EU/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/
Thanks:
This work has received funding from Horizon 2020, the European Union's Framework Programme for Research and Innovation, under grant Agreement No. 860627 (CLARIFY), the Spanish Ministry of Economy and Competitiveness through ...[+]
Type: Artículo

References

Akhavan-Niaki H, Samadani AA (2013) DNA methylation and cancer development: molecular mechanism. Cell Biochem Biophys 67(2):501–513

Araújo AF, Antonino VO, Ponce-Guevara KL (2020) Self-organizing subspace clustering for high-dimensional and multi-view data. Neural Netw 130:253–268

Bellman R (1957) Dynamic programming. Princeton Univ, Princeton [+]
Akhavan-Niaki H, Samadani AA (2013) DNA methylation and cancer development: molecular mechanism. Cell Biochem Biophys 67(2):501–513

Araújo AF, Antonino VO, Ponce-Guevara KL (2020) Self-organizing subspace clustering for high-dimensional and multi-view data. Neural Netw 130:253–268

Bellman R (1957) Dynamic programming. Princeton Univ, Princeton

Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL et al (2011) High density DNA methylation array with single CPG site resolution. Genomics 98(4):288–295

Cevikalp H (2019) High-dimensional data clustering by using local affine/convex hulls. Pattern Recognit Lett 128:427–432

Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM (2010) Comparison of beta-value and m-value methods for quantifying methylation levels by microarray analysis. BMC Bioinf 11(1):587

Enguehard J, O’Halloran P, Gholipour A (2019) Semi-supervised learning with deep embedded clustering for image classification and segmentation. IEEE Access 7:11093–11104

Esteller M (2008) Epigenetics in cancer. New Engl J Med 358(11):1148–1159

Foster D (2019) Generative deep learning: teaching machines to paint, write, compose, and play. O’Reilly Media

GEO: Epigenome analysis of breast tissue from women with and without breast cancer. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse32393

Guo X, Liu X, Zhu E, Yin J (2017) Deep clustering with convolutional autoencoders. In: International conference on neural information processing, pp. 373–382. Springer

Guo X, Zhu E, Liu X, Yin J (2018) Deep embedded clustering with data augmentation. In: Asian conference on machine learning, pp. 550–565

Hershey JR, Chen Z, Le Roux J, Watanabe S (2016) Deep clustering: Discriminative embeddings for segmentation and separation. In: 2016 IEEE international conference on acoustics, apeech and signal processing (ICASSP), pp. 31–35. IEEE

Hofmeyr DP (2016) Clustering by minimum cut hyperplanes. IEEE Trans Pattern Anal Mach Intell 39(8):1547–1560

Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218

Jazayeri N, Sajedi H (2020) Breast cancer diagnosis based on genomic data and extreme learning machine. SN Appl Sci 2(1):3

Khwaja M, Kalofonou M, Toumazou C (2018) A deep autoencoder system for differentiation of cancer types based on DNA methylation state. arXiv preprint arXiv:1810.01243

Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nature Rev Genet 11(3):191–203

Liu B, Liu Y, Pan X, Li M, Yang S, Li SC (2019) DNA methylation markers for pan-cancer prediction by deep learning. Genes 10(10):778

Maaten LD, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(Nov):2579–2605

Martorell-Marugán J, Tabik S, Benhammou Y, del Val C, Zwir I, Herrera F, Carmona-Sáez P (2019) Deep learning in omics data analysis and precision medicine. In: Computational Biology [Internet]. Codon Publications

Min E, Guo X, Liu Q, Zhang G, Cui J, Long J (2018) A survey of clustering with deep learning: from the perspective of network architecture. IEEE Access 6:39501–39514

Prasetio B.H, Tamura H, Tanno K (2019) A deep time-delay embedded algorithm for unsupervised stress speech clustering. In: 2019 IEEE international conference on systems, man and cybernetics (SMC), pp. 1193–1198. IEEE

Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36

Si Z, Yu H, Ma Z (2016) Learning deep features for DNA methylation data analysis. IEEE Access 4:2732–2737

Strehl A, Ghosh J (2002) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3(Dec):583–617

Tasoulis S, Pavlidis NG, Roos T (2020) Nonlinear dimensionality reduction for clustering. Pattern Recognit 107:107508

Tian T, Wan J, Song Q, Wei Z (2019) Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat Mach Intell 1(4):191–198

Titus AJ, Wilkins OM, Bobak CA, Christensen BC (2018) Unsupervised deep learning with variational autoencoders applied to breast tumor genome-wide DNA methylation data with biologic feature extraction. bioRxiv p. 433763

Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA (2002) DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene 21(35):5450–5461

Venkat N (2018) The curse of dimensionality: Inside out

Xie J, Girshick R, Farhadi A (2018) Unsupervised deep embedding for clustering analysis. In: International conference on machine learning, pp. 478–487 x

Yuvaraj N, Vivekanandan P (2013) An efficient SVM based tumor classification with symmetry non-negative matrix factorization using gene expression data. In: 2013 International conference on information communication and embedded systems (Icices), pp. 761–768. IEEE

Zhang W, Spector TD, Deloukas P, Bell JT, Engelhardt BE (2015) Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol 16(1):14

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record