Akhavan-Niaki H, Samadani AA (2013) DNA methylation and cancer development: molecular mechanism. Cell Biochem Biophys 67(2):501–513
Araújo AF, Antonino VO, Ponce-Guevara KL (2020) Self-organizing subspace clustering for high-dimensional and multi-view data. Neural Netw 130:253–268
Bellman R (1957) Dynamic programming. Princeton Univ, Princeton
[+]
Akhavan-Niaki H, Samadani AA (2013) DNA methylation and cancer development: molecular mechanism. Cell Biochem Biophys 67(2):501–513
Araújo AF, Antonino VO, Ponce-Guevara KL (2020) Self-organizing subspace clustering for high-dimensional and multi-view data. Neural Netw 130:253–268
Bellman R (1957) Dynamic programming. Princeton Univ, Princeton
Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL et al (2011) High density DNA methylation array with single CPG site resolution. Genomics 98(4):288–295
Cevikalp H (2019) High-dimensional data clustering by using local affine/convex hulls. Pattern Recognit Lett 128:427–432
Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM (2010) Comparison of beta-value and m-value methods for quantifying methylation levels by microarray analysis. BMC Bioinf 11(1):587
Enguehard J, O’Halloran P, Gholipour A (2019) Semi-supervised learning with deep embedded clustering for image classification and segmentation. IEEE Access 7:11093–11104
Esteller M (2008) Epigenetics in cancer. New Engl J Med 358(11):1148–1159
Foster D (2019) Generative deep learning: teaching machines to paint, write, compose, and play. O’Reilly Media
GEO: Epigenome analysis of breast tissue from women with and without breast cancer. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse32393
Guo X, Liu X, Zhu E, Yin J (2017) Deep clustering with convolutional autoencoders. In: International conference on neural information processing, pp. 373–382. Springer
Guo X, Zhu E, Liu X, Yin J (2018) Deep embedded clustering with data augmentation. In: Asian conference on machine learning, pp. 550–565
Hershey JR, Chen Z, Le Roux J, Watanabe S (2016) Deep clustering: Discriminative embeddings for segmentation and separation. In: 2016 IEEE international conference on acoustics, apeech and signal processing (ICASSP), pp. 31–35. IEEE
Hofmeyr DP (2016) Clustering by minimum cut hyperplanes. IEEE Trans Pattern Anal Mach Intell 39(8):1547–1560
Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218
Jazayeri N, Sajedi H (2020) Breast cancer diagnosis based on genomic data and extreme learning machine. SN Appl Sci 2(1):3
Khwaja M, Kalofonou M, Toumazou C (2018) A deep autoencoder system for differentiation of cancer types based on DNA methylation state. arXiv preprint arXiv:1810.01243
Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nature Rev Genet 11(3):191–203
Liu B, Liu Y, Pan X, Li M, Yang S, Li SC (2019) DNA methylation markers for pan-cancer prediction by deep learning. Genes 10(10):778
Maaten LD, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(Nov):2579–2605
Martorell-Marugán J, Tabik S, Benhammou Y, del Val C, Zwir I, Herrera F, Carmona-Sáez P (2019) Deep learning in omics data analysis and precision medicine. In: Computational Biology [Internet]. Codon Publications
Min E, Guo X, Liu Q, Zhang G, Cui J, Long J (2018) A survey of clustering with deep learning: from the perspective of network architecture. IEEE Access 6:39501–39514
Prasetio B.H, Tamura H, Tanno K (2019) A deep time-delay embedded algorithm for unsupervised stress speech clustering. In: 2019 IEEE international conference on systems, man and cybernetics (SMC), pp. 1193–1198. IEEE
Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36
Si Z, Yu H, Ma Z (2016) Learning deep features for DNA methylation data analysis. IEEE Access 4:2732–2737
Strehl A, Ghosh J (2002) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3(Dec):583–617
Tasoulis S, Pavlidis NG, Roos T (2020) Nonlinear dimensionality reduction for clustering. Pattern Recognit 107:107508
Tian T, Wan J, Song Q, Wei Z (2019) Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat Mach Intell 1(4):191–198
Titus AJ, Wilkins OM, Bobak CA, Christensen BC (2018) Unsupervised deep learning with variational autoencoders applied to breast tumor genome-wide DNA methylation data with biologic feature extraction. bioRxiv p. 433763
Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA (2002) DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene 21(35):5450–5461
Venkat N (2018) The curse of dimensionality: Inside out
Xie J, Girshick R, Farhadi A (2018) Unsupervised deep embedding for clustering analysis. In: International conference on machine learning, pp. 478–487 x
Yuvaraj N, Vivekanandan P (2013) An efficient SVM based tumor classification with symmetry non-negative matrix factorization using gene expression data. In: 2013 International conference on information communication and embedded systems (Icices), pp. 761–768. IEEE
Zhang W, Spector TD, Deloukas P, Bell JT, Engelhardt BE (2015) Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol 16(1):14
[-]