- -

Impact of the Array Shape and Memory Bandwidth on the Execution time of CNN Systolic Arrays

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impact of the Array Shape and Memory Bandwidth on the Execution time of CNN Systolic Arrays

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yago, Eduardo es_ES
dc.contributor.author Castelló, Pau es_ES
dc.contributor.author Petit Martí, Salvador Vicente es_ES
dc.contributor.author Gómez Requena, María Engracia es_ES
dc.contributor.author Sahuquillo Borrás, Julio es_ES
dc.date.accessioned 2022-01-18T08:11:11Z
dc.date.available 2022-01-18T08:11:11Z
dc.date.issued 2020-08-28 es_ES
dc.identifier.isbn 978-1-7281-9535-3 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179777
dc.description.abstract [EN] The use of Convolutional Neural Networks (CNN) has experienced a huge rise over the last recent years and its popularity has increased exponentially, mainly due to its application both for image recognition and certain applications related to artificial intelligence. The new applications of CNN request computing demands that are difficult to address by conventional processors. As a consequence, accelerators ¿both prototypes and commercial products¿ focusing on CNN computation have been proposed. Among these accelerators, those based on systolic arrays have acquired a special relevance; some examples are the Google¿s TPU and Eyeriss. Current research has focused on regular squared systolic arrays and most existing work assumes that there is enough memory bandwidth to feed the systolic array with input data. In this paper we explore the design of non-squared systolic arrays and address the impact of the memory bandwidth from a performance perspective. This work makes two main contributions. First, we found that some workloads with non-squared arrays achieve similar performance to systolic arrays twice as large, which can translate in area and/or energy benefits. Second, we present a performance comparison varying the main memory bandwidth for current DRAM devices. The analysis reveals that main memory bandwidth has a great impact on performance and that the decision of which technology use is key for the system performance. For the 64x64 array size it is necessary to use HBM2 memory to avoid the slowdown that would introduce cheaper technologies (e.g. DDR5 and DDR4). es_ES
dc.description.sponsorship This work has been supported by Ministerio de Ciencia, Innovacion y Universidades and the European ERDF under Grant RTI2018-098156-B-C51. es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof Proceedings of the 23rd Euromicro Conference on Digital System Design (DSD 2020) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Systolic arrays es_ES
dc.subject Architectural parameters es_ES
dc.subject Performance es_ES
dc.subject Main memory technology es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Impact of the Array Shape and Memory Bandwidth on the Execution time of CNN Systolic Arrays es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/DSD51259.2020.00086 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C51/ES/TECNOLOGIAS INNOVADORAS DE PROCESADORES, ACELERADORES Y REDES, PARA CENTROS DE DATOS Y COMPUTACION DE ALTAS PRESTACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTI2018-098156-B-C51//TECNOLOGIAS INNOVADORAS DE PROCESADORES, ACELERADORES Y REDES, PARA CENTROS DE DATOS Y COMPUTACION DE ALTAS PRESTACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Yago, E.; Castelló, P.; Petit Martí, SV.; Gómez Requena, ME.; Sahuquillo Borrás, J. (2020). Impact of the Array Shape and Memory Bandwidth on the Execution time of CNN Systolic Arrays. IEEE. 510-517. https://doi.org/10.1109/DSD51259.2020.00086 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 23rd Euromicro Conference on Digital System Design (DSD 2020) es_ES
dc.relation.conferencedate Agosto 26-28,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1109/DSD51259.2020.00086 es_ES
dc.description.upvformatpinicio 510 es_ES
dc.description.upvformatpfin 517 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\417647 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem