- -

Prediction of IKr Blocker Channel State Preference Based on Voltage Clamp Simulations Using Machine Learning Techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Prediction of IKr Blocker Channel State Preference Based on Voltage Clamp Simulations Using Machine Learning Techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escobar-Ropero, Fernando es_ES
dc.contributor.author Gomis-Tena Dolz, Julio es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.contributor.author Romero Pérez, Lucia es_ES
dc.date.accessioned 2022-01-18T08:13:11Z
dc.date.available 2022-01-18T08:13:11Z
dc.date.issued 2020-09-16 es_ES
dc.identifier.issn 2325-887X es_ES
dc.identifier.uri http://hdl.handle.net/10251/179852
dc.description.abstract [EN] Assessment of drug cardiotoxicity is crucial in the development of new compounds and is typically addressed by evaluating the blockade they cause in the potassium human ether-à-go-go related gene (hERG) channels. Our objective is to develop a classifier to determine the preference for binding to the different states of a drug. We created a set of 2600 virtual blockers with different affinities and kinetics to the conformational states of the channel divided into 13 classes. Simulations were carried out using three stimulation protocols that enhance the probabilities of the channel to occupy a certain state. Three measurements were taken for each of the simulations: IC50, the recovery constant of the IKr potassium current and an estimation of the time required for the simulation to be stable. Therefore, we obtained 9 variables for each of the blockers studied. A two-step classifier was developed, trained and evaluated. First, we used support vector machines on the IC50 to separate the 13 classes into three groups with 4, 5 and 4 classes respectively. Secondly, we used neural networks on each group with all the variables to finally classify the blockers. The three classifiers obtained an overall accuracy on the test group of 90.83, 88.66 and 89.16% for each of the groups respectively. es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof CinC 2020: Program. Computing in Cardiology, vol. 47 es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Prediction of IKr Blocker Channel State Preference Based on Voltage Clamp Simulations Using Machine Learning Techniques es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.22489/CinC.2020.274 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Escobar-Ropero, F.; Gomis-Tena Dolz, J.; Saiz Rodríguez, FJ.; Romero Pérez, L. (2020). Prediction of IKr Blocker Channel State Preference Based on Voltage Clamp Simulations Using Machine Learning Techniques. IEEE. 1-4. https://doi.org/10.22489/CinC.2020.274 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 47th Computing in Cardiology Conference (CinC 2020) es_ES
dc.relation.conferencedate Septiembre 13-16,2020 es_ES
dc.relation.conferenceplace Rimini, Italia es_ES
dc.relation.publisherversion https://doi.org/10.22489/CinC.2020.274 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\429622 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem