Mostrar el registro completo del ítem
Escobar-Ropero, F.; Gomis-Tena Dolz, J.; Saiz Rodríguez, FJ.; Romero Pérez, L. (2020). Prediction of IKr Blocker Channel State Preference Based on Voltage Clamp Simulations Using Machine Learning Techniques. IEEE. 1-4. https://doi.org/10.22489/CinC.2020.274
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179852
Título: | Prediction of IKr Blocker Channel State Preference Based on Voltage Clamp Simulations Using Machine Learning Techniques | |
Autor: | ||
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Assessment of drug cardiotoxicity is crucial in the development of new compounds and is typically addressed by evaluating the blockade they cause in the potassium human ether-à-go-go related gene (hERG) channels. Our ...[+]
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.22489/CinC.2020.274 | |
Título del congreso: |
|
|
Lugar del congreso: |
|
|
Fecha congreso: |
|
|
Tipo: |
|