- -

Towards Designing Conceptual Data Models for Big Data Warehouses: The Genomics Case

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Towards Designing Conceptual Data Models for Big Data Warehouses: The Genomics Case

Show full item record

Galvão, J.; León-Palacio, A.; Costa, C.; Santos, MY.; Pastor López, O. (2020). Towards Designing Conceptual Data Models for Big Data Warehouses: The Genomics Case. Springer Nature. 3-19. https://doi.org/10.1007/978-3-030-63396-7_1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179859

Files in this item

Item Metadata

Title: Towards Designing Conceptual Data Models for Big Data Warehouses: The Genomics Case
Author: Galvão, João León-Palacio, Ana Costa, Carlos Santos, Maribel Yasmina Pastor López, Oscar
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] Data Warehousing applied in Big Data contexts has been an emergent topic of research, as traditional Data Warehousing technologies are unable to deal with Big Data characteristics and challenges. The methods used in ...[+]
Subjects: Data Warehousing , Big data modelling , Conceptual modeling
Copyrigths: Reserva de todos los derechos
ISBN: 978-3-030-63395-0
Source:
Information Systems. 17th European, Mediterranean, and Middle Eastern Conference, EMCIS 2020, Dubai, United Arab Emirates, November 25-26, 2020, Proceedings. (issn: 1865-1348 )
DOI: 10.1007/978-3-030-63396-7_1
Publisher:
Springer Nature
Publisher version: https://doi.org/10.1007/978-3-030-63396-7_1
Conference name: 17th European, Mediterranean and Middle Eastern Conference on Information Systems (EMCIS 2020)
Conference place: Online
Conference date: Noviembre 25-26,2020
Series: Lecture Notes in Business Information Processing;402
Project ID:
info:eu-repo/grantAgreement/FCT//UID%2FCEC%2F00319%2F2019/
...[+]
info:eu-repo/grantAgreement/FCT//UID%2FCEC%2F00319%2F2019/
info:eu-repo/grantAgreement/FCT//PD%2FBDE%2F135100%2F2017/
info:eu-repo/grantAgreement/FEDER//POCI-01-0247-FEDER-039479/
info:eu-repo/grantAgreement///TIN2016-80811-P//UN METODO DE PRODUCCION DE SOFTWARE DIRIGIDO POR MODELOS PARA EL DESARROLLO DE APLICACIONES BIG DATA/
info:eu-repo/grantAgreement///PROMETEO%2F2018%2F176//GISPRO-GENOMIC INFORMATION SYSTEMS PRODUCTION/
info:eu-repo/grantAgreement///ACIF%2F2018%2F171//SOPORTE ONTOLOGICO Y TECNOLOGICO PARA EL DESARROLLO DE APLICACIONES BIG DATA./
[-]
Thanks:
This work has been supported by FCT - Fundação para a Ciên-cia e Tecnologia within the Project Scope: UID/CEC/00319/2019, the Doctoral scholarship PD/BDE/135100/2017 and European Structural and Investment Funds in the FEDER ...[+]
Type: Comunicación en congreso Artículo Capítulo de libro

References

Krishnan, K.: Data Warehousing in the Age of Big Data. Morgan Kaufmann is an imprint of Elsevier, Amsterdam (2013)

Santos, M.Y., Costa, C.: Big Data: Concepts, Warehousing and Analytics. River Publishers, Aalborg (2020)

Cuzzocrea, A., Moussa, R.: Multidimensional database modeling: literature survey and research agenda in the big data era. In: 2017 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6 (2017) [+]
Krishnan, K.: Data Warehousing in the Age of Big Data. Morgan Kaufmann is an imprint of Elsevier, Amsterdam (2013)

Santos, M.Y., Costa, C.: Big Data: Concepts, Warehousing and Analytics. River Publishers, Aalborg (2020)

Cuzzocrea, A., Moussa, R.: Multidimensional database modeling: literature survey and research agenda in the big data era. In: 2017 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6 (2017)

Di Tria, F., Lefons, E., Tangorra, F.: Design process for big data warehouses. In: 2014 International Conference on Data Science and Advanced Analytics (DSAA), pp. 512–518. IEEE (2014)

Dehdouh, K., Bentayeb, F., Boussaid, O., Kabachi, N.: Using the column oriented NoSQL model for implementing big data warehouses. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA) (2015)

Bézivin, J.: On the unification power of models. Softw. Syst. Model. 4(2), 171–188 (2005). https://doi.org/10.1007/s10270-005-0079-0

Reyes Román, J.F., Pastor, Ó., Casamayor, J.C., Valverde, F.: Applying conceptual modeling to better understand the human genome. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 404–412. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_31

Embley, D.W., Liddle, S.W.: Big data—conceptual modeling to the rescue. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 1–8. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9_1

Giebler, C., Gröger, C., Hoos, E., Schwarz, H., Mitschang, B.: Modeling data lakes with data vault: practical experiences, assessment, and lessons learned. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 63–77. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_7

Gil, D., Song, I.-Y.: Modeling and management of big data: challenges and opportunities. Future Gener. Comput. Syst. 63, 96–99 (2016)

Di Tria, F., Lefons, E., Tangorra, F.: GrHyMM: a graph-oriented hybrid multidimensional model. In: De Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P., Simitsis, A., Van Mingroot, H. (eds.) ER 2011. LNCS, vol. 6999, pp. 86–97. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24574-9_12

Santos, M.Y., Costa, C.: Data warehousing in big data: from multidimensional to tabular data models. In: Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering, pp. 51–60. ACM, New York (2016)

Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. Wiley, Hoboken (2013)

Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_28

Santos, M.Y., Costa, C., Galvão, J., Andrade, C., Pastor, O., Marcén, A.C.: Big data warehousing for efficient, integrated and advanced analytics - visionary paper. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019. LNBIP, vol. 350, pp. 215–226. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_19

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record