- -

Towards Designing Conceptual Data Models for Big Data Warehouses: The Genomics Case

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Towards Designing Conceptual Data Models for Big Data Warehouses: The Genomics Case

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galvão, João es_ES
dc.contributor.author León-Palacio, Ana es_ES
dc.contributor.author Costa, Carlos es_ES
dc.contributor.author Santos, Maribel Yasmina es_ES
dc.contributor.author Pastor López, Oscar es_ES
dc.date.accessioned 2022-01-18T08:13:21Z
dc.date.available 2022-01-18T08:13:21Z
dc.date.issued 2020-11-26 es_ES
dc.identifier.isbn 978-3-030-63395-0 es_ES
dc.identifier.issn 1865-1348 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179859
dc.description.abstract [EN] Data Warehousing applied in Big Data contexts has been an emergent topic of research, as traditional Data Warehousing technologies are unable to deal with Big Data characteristics and challenges. The methods used in this field are already well systematized and adopted by practitioners, while research in Big Data Warehousing is only starting to provide some guidance on how to model such complex systems. This work contributes to the process of designing conceptual data models for Big Data Warehouses proposing a method based on rules and design patterns, which aims to gather the information of a certain application domain mapped in a relational conceptual model. A complex domain that can benefit from this work is Genomics, characterized by an increasing heterogeneity, both in terms of content and data structure. Moreover, the challenges for collecting and analyzing genome data under a unified perspective have become a bottleneck for the scientific community, reason why standardized analytical repositories such as a Big Genome Warehouse can be of high value to the community. In the demonstration case presented here, a genomics relational model is merged with the proposed Big Data Warehouse Conceptual Metamodel to obtain the Big Genome Warehouse Conceptual Model, showing that the design rules and patterns can be applied having a relational conceptual model as starting point. es_ES
dc.description.sponsorship This work has been supported by FCT - Fundação para a Ciên-cia e Tecnologia within the Project Scope: UID/CEC/00319/2019, the Doctoral scholarship PD/BDE/135100/2017 and European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project nº 039479; Funding Reference: POCI-01-0247-FEDER-039479]. We also thank both the Spanish State Research Agency and the Generalitat Valenciana under the projects DataME TIN2016-80811-P, ACIF/2018/171, and PROMETEO/2018/176. Icons made by Freepik, from www.flaticon.com. es_ES
dc.language Inglés es_ES
dc.publisher Springer Nature es_ES
dc.relation.ispartof Information Systems. 17th European, Mediterranean, and Middle Eastern Conference, EMCIS 2020, Dubai, United Arab Emirates, November 25-26, 2020, Proceedings es_ES
dc.relation.ispartofseries Lecture Notes in Business Information Processing;402 es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Data Warehousing es_ES
dc.subject Big data modelling es_ES
dc.subject Conceptual modeling es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Towards Designing Conceptual Data Models for Big Data Warehouses: The Genomics Case es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-030-63396-7_1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//UID%2FCEC%2F00319%2F2019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//PD%2FBDE%2F135100%2F2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FEDER//POCI-01-0247-FEDER-039479/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///TIN2016-80811-P//UN METODO DE PRODUCCION DE SOFTWARE DIRIGIDO POR MODELOS PARA EL DESARROLLO DE APLICACIONES BIG DATA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///PROMETEO%2F2018%2F176//GISPRO-GENOMIC INFORMATION SYSTEMS PRODUCTION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///ACIF%2F2018%2F171//SOPORTE ONTOLOGICO Y TECNOLOGICO PARA EL DESARROLLO DE APLICACIONES BIG DATA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Galvão, J.; León-Palacio, A.; Costa, C.; Santos, MY.; Pastor López, O. (2020). Towards Designing Conceptual Data Models for Big Data Warehouses: The Genomics Case. Springer Nature. 3-19. https://doi.org/10.1007/978-3-030-63396-7_1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 17th European, Mediterranean and Middle Eastern Conference on Information Systems (EMCIS 2020) es_ES
dc.relation.conferencedate Noviembre 25-26,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-63396-7_1 es_ES
dc.description.upvformatpinicio 3 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\423315 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.description.references Krishnan, K.: Data Warehousing in the Age of Big Data. Morgan Kaufmann is an imprint of Elsevier, Amsterdam (2013) es_ES
dc.description.references Santos, M.Y., Costa, C.: Big Data: Concepts, Warehousing and Analytics. River Publishers, Aalborg (2020) es_ES
dc.description.references Cuzzocrea, A., Moussa, R.: Multidimensional database modeling: literature survey and research agenda in the big data era. In: 2017 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6 (2017) es_ES
dc.description.references Di Tria, F., Lefons, E., Tangorra, F.: Design process for big data warehouses. In: 2014 International Conference on Data Science and Advanced Analytics (DSAA), pp. 512–518. IEEE (2014) es_ES
dc.description.references Dehdouh, K., Bentayeb, F., Boussaid, O., Kabachi, N.: Using the column oriented NoSQL model for implementing big data warehouses. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA) (2015) es_ES
dc.description.references Bézivin, J.: On the unification power of models. Softw. Syst. Model. 4(2), 171–188 (2005). https://doi.org/10.1007/s10270-005-0079-0 es_ES
dc.description.references Reyes Román, J.F., Pastor, Ó., Casamayor, J.C., Valverde, F.: Applying conceptual modeling to better understand the human genome. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 404–412. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_31 es_ES
dc.description.references Embley, D.W., Liddle, S.W.: Big data—conceptual modeling to the rescue. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 1–8. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9_1 es_ES
dc.description.references Giebler, C., Gröger, C., Hoos, E., Schwarz, H., Mitschang, B.: Modeling data lakes with data vault: practical experiences, assessment, and lessons learned. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 63–77. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_7 es_ES
dc.description.references Gil, D., Song, I.-Y.: Modeling and management of big data: challenges and opportunities. Future Gener. Comput. Syst. 63, 96–99 (2016) es_ES
dc.description.references Di Tria, F., Lefons, E., Tangorra, F.: GrHyMM: a graph-oriented hybrid multidimensional model. In: De Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P., Simitsis, A., Van Mingroot, H. (eds.) ER 2011. LNCS, vol. 6999, pp. 86–97. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24574-9_12 es_ES
dc.description.references Santos, M.Y., Costa, C.: Data warehousing in big data: from multidimensional to tabular data models. In: Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering, pp. 51–60. ACM, New York (2016) es_ES
dc.description.references Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. Wiley, Hoboken (2013) es_ES
dc.description.references Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_28 es_ES
dc.description.references Santos, M.Y., Costa, C., Galvão, J., Andrade, C., Pastor, O., Marcén, A.C.: Big data warehousing for efficient, integrated and advanced analytics - visionary paper. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019. LNBIP, vol. 350, pp. 215–226. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_19 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem