Mostrar el registro sencillo del ítem
dc.contributor.author | Galvão, João | es_ES |
dc.contributor.author | León-Palacio, Ana | es_ES |
dc.contributor.author | Costa, Carlos | es_ES |
dc.contributor.author | Santos, Maribel Yasmina | es_ES |
dc.contributor.author | Pastor López, Oscar | es_ES |
dc.date.accessioned | 2022-01-18T08:13:21Z | |
dc.date.available | 2022-01-18T08:13:21Z | |
dc.date.issued | 2020-11-26 | es_ES |
dc.identifier.isbn | 978-3-030-63395-0 | es_ES |
dc.identifier.issn | 1865-1348 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/179859 | |
dc.description.abstract | [EN] Data Warehousing applied in Big Data contexts has been an emergent topic of research, as traditional Data Warehousing technologies are unable to deal with Big Data characteristics and challenges. The methods used in this field are already well systematized and adopted by practitioners, while research in Big Data Warehousing is only starting to provide some guidance on how to model such complex systems. This work contributes to the process of designing conceptual data models for Big Data Warehouses proposing a method based on rules and design patterns, which aims to gather the information of a certain application domain mapped in a relational conceptual model. A complex domain that can benefit from this work is Genomics, characterized by an increasing heterogeneity, both in terms of content and data structure. Moreover, the challenges for collecting and analyzing genome data under a unified perspective have become a bottleneck for the scientific community, reason why standardized analytical repositories such as a Big Genome Warehouse can be of high value to the community. In the demonstration case presented here, a genomics relational model is merged with the proposed Big Data Warehouse Conceptual Metamodel to obtain the Big Genome Warehouse Conceptual Model, showing that the design rules and patterns can be applied having a relational conceptual model as starting point. | es_ES |
dc.description.sponsorship | This work has been supported by FCT - Fundação para a Ciên-cia e Tecnologia within the Project Scope: UID/CEC/00319/2019, the Doctoral scholarship PD/BDE/135100/2017 and European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project nº 039479; Funding Reference: POCI-01-0247-FEDER-039479]. We also thank both the Spanish State Research Agency and the Generalitat Valenciana under the projects DataME TIN2016-80811-P, ACIF/2018/171, and PROMETEO/2018/176. Icons made by Freepik, from www.flaticon.com. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Nature | es_ES |
dc.relation.ispartof | Information Systems. 17th European, Mediterranean, and Middle Eastern Conference, EMCIS 2020, Dubai, United Arab Emirates, November 25-26, 2020, Proceedings | es_ES |
dc.relation.ispartofseries | Lecture Notes in Business Information Processing;402 | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Data Warehousing | es_ES |
dc.subject | Big data modelling | es_ES |
dc.subject | Conceptual modeling | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Towards Designing Conceptual Data Models for Big Data Warehouses: The Genomics Case | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-63396-7_1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//UID%2FCEC%2F00319%2F2019/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//PD%2FBDE%2F135100%2F2017/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FEDER//POCI-01-0247-FEDER-039479/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///TIN2016-80811-P//UN METODO DE PRODUCCION DE SOFTWARE DIRIGIDO POR MODELOS PARA EL DESARROLLO DE APLICACIONES BIG DATA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///PROMETEO%2F2018%2F176//GISPRO-GENOMIC INFORMATION SYSTEMS PRODUCTION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///ACIF%2F2018%2F171//SOPORTE ONTOLOGICO Y TECNOLOGICO PARA EL DESARROLLO DE APLICACIONES BIG DATA./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Galvão, J.; León-Palacio, A.; Costa, C.; Santos, MY.; Pastor López, O. (2020). Towards Designing Conceptual Data Models for Big Data Warehouses: The Genomics Case. Springer Nature. 3-19. https://doi.org/10.1007/978-3-030-63396-7_1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 17th European, Mediterranean and Middle Eastern Conference on Information Systems (EMCIS 2020) | es_ES |
dc.relation.conferencedate | Noviembre 25-26,2020 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-63396-7_1 | es_ES |
dc.description.upvformatpinicio | 3 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\423315 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.description.references | Krishnan, K.: Data Warehousing in the Age of Big Data. Morgan Kaufmann is an imprint of Elsevier, Amsterdam (2013) | es_ES |
dc.description.references | Santos, M.Y., Costa, C.: Big Data: Concepts, Warehousing and Analytics. River Publishers, Aalborg (2020) | es_ES |
dc.description.references | Cuzzocrea, A., Moussa, R.: Multidimensional database modeling: literature survey and research agenda in the big data era. In: 2017 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6 (2017) | es_ES |
dc.description.references | Di Tria, F., Lefons, E., Tangorra, F.: Design process for big data warehouses. In: 2014 International Conference on Data Science and Advanced Analytics (DSAA), pp. 512–518. IEEE (2014) | es_ES |
dc.description.references | Dehdouh, K., Bentayeb, F., Boussaid, O., Kabachi, N.: Using the column oriented NoSQL model for implementing big data warehouses. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA) (2015) | es_ES |
dc.description.references | Bézivin, J.: On the unification power of models. Softw. Syst. Model. 4(2), 171–188 (2005). https://doi.org/10.1007/s10270-005-0079-0 | es_ES |
dc.description.references | Reyes Román, J.F., Pastor, Ó., Casamayor, J.C., Valverde, F.: Applying conceptual modeling to better understand the human genome. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 404–412. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_31 | es_ES |
dc.description.references | Embley, D.W., Liddle, S.W.: Big data—conceptual modeling to the rescue. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 1–8. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9_1 | es_ES |
dc.description.references | Giebler, C., Gröger, C., Hoos, E., Schwarz, H., Mitschang, B.: Modeling data lakes with data vault: practical experiences, assessment, and lessons learned. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 63–77. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_7 | es_ES |
dc.description.references | Gil, D., Song, I.-Y.: Modeling and management of big data: challenges and opportunities. Future Gener. Comput. Syst. 63, 96–99 (2016) | es_ES |
dc.description.references | Di Tria, F., Lefons, E., Tangorra, F.: GrHyMM: a graph-oriented hybrid multidimensional model. In: De Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P., Simitsis, A., Van Mingroot, H. (eds.) ER 2011. LNCS, vol. 6999, pp. 86–97. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24574-9_12 | es_ES |
dc.description.references | Santos, M.Y., Costa, C.: Data warehousing in big data: from multidimensional to tabular data models. In: Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering, pp. 51–60. ACM, New York (2016) | es_ES |
dc.description.references | Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. Wiley, Hoboken (2013) | es_ES |
dc.description.references | Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_28 | es_ES |
dc.description.references | Santos, M.Y., Costa, C., Galvão, J., Andrade, C., Pastor, O., Marcén, A.C.: Big data warehousing for efficient, integrated and advanced analytics - visionary paper. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019. LNBIP, vol. 350, pp. 215–226. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_19 | es_ES |