- -

Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment

Mostrar el registro completo del ítem

Kekic, M.; Adams, C.; Woodruff, K.; Renner, J.; Church, E.; Del Tutto, M.; Hernando Morata, JA.... (2021). Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment. Journal of High Energy Physics (Online). (1):1-22. https://doi.org/10.1007/JHEP01(2021)189

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179911

Ficheros en el ítem

Metadatos del ítem

Título: Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment
Autor: Kekic, M. Adams, C. Woodruff, K. Renner, J. Church, E. Del Tutto, M. Hernando Morata, J. A. Gomez-Cadenas, J. J. Álvarez-Puerta, Vicente Arazi, L. Arnquist, I.J. Azevedo, C. D. R. Bailey, K. Ballester Merelo, Francisco José Benlloch-Rodriguez, J. M. Esteve Bosch, Raul Herrero Bosch, Vicente Mora Mas, Francisco José Rodriguez-Samaniego, Javier Toledo Alarcón, José Francisco
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs ...[+]
Palabras clave: Dark Matter and Double Beta Decay (experiments)
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of High Energy Physics (Online). (eissn: 1029-8479 )
DOI: 10.1007/JHEP01(2021)189
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/JHEP01(2021)189
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095979-B-C44/ES/CONSTRUCCION Y OPERACION DEL DETECTOR NEXT-100/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095979-B-C44/ES/CONSTRUCCION Y OPERACION DEL DETECTOR NEXT-100/
info:eu-repo/grantAgreement/DOE//DE-FG02-13ER42020/
info:eu-repo/grantAgreement/EC/FP7/339787/EU/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F048/
info:eu-repo/grantAgreement/EC/H2020/674896/EU/
info:eu-repo/grantAgreement/FCT//UID%2FFIS%2F04559%2F2020/
info:eu-repo/grantAgreement/EC/H2020/690575/EU/
info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/
info:eu-repo/grantAgreement/EC/H2020/740055/EU/
info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/
info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-1-R/ES/CONSTRUCCION OPERACION E I+D+I PARA EL EXPERIMENTO NEXT EN EL LSC./
info:eu-repo/grantAgreement/DOE//DE-SC0019223/
info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-4-R/ES/CONSTRUCCION, VALIDACION Y OPERACION DE LA ELECTRONICA DEL EXPERIMENTO NEXT/
info:eu-repo/grantAgreement/DOE//DE-SC0019054/
info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/
info:eu-repo/grantAgreement/MCIU//MDM-2016-0692//Programa Maria de Maetzu/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/
info:eu-repo/grantAgreement/GVA//SEJI%2F2017%2F011/
info:eu-repo/grantAgreement/MINECO//RYC-2015-18820//RYC-2015-18820/
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//100010434/
info:eu-repo/grantAgreement/MINECO//CEX2018-000867-S/
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FPI19%2F11690012/
[-]
Agradecimientos:
This study used computing resources from Artemisa, co-funded by the European Union through the 2014-2020 FEDER Operative Programme of the Comunitat Valenciana, project DIFEDER/2018/048. This research used resources of the ...[+]
Tipo: Artículo

References

NEXT collaboration, The Next White (NEW) Detector, 2018 JINST 13 P12010 [arXiv:1804.02409] [INSPIRE].

NEXT collaboration, Energy calibration of the NEXT-White detector with 1% resolution near Qββ of 136Xe, JHEP 10 (2019) 230 [arXiv:1905.13110] [INSPIRE].

NEXT collaboration, Demonstration of the event identification capabilities of the NEXT-White detector, JHEP 10 (2019) 052 [arXiv:1905.13141] [INSPIRE]. [+]
NEXT collaboration, The Next White (NEW) Detector, 2018 JINST 13 P12010 [arXiv:1804.02409] [INSPIRE].

NEXT collaboration, Energy calibration of the NEXT-White detector with 1% resolution near Qββ of 136Xe, JHEP 10 (2019) 230 [arXiv:1905.13110] [INSPIRE].

NEXT collaboration, Demonstration of the event identification capabilities of the NEXT-White detector, JHEP 10 (2019) 052 [arXiv:1905.13141] [INSPIRE].

NEXT collaboration, Radiogenic Backgrounds in the NEXT Double Beta Decay Experiment, JHEP 10 (2019) 051 [arXiv:1905.13625] [INSPIRE].

G. Carleo et al., Machine learning and the physical sciences, Rev. Mod. Phys. 91 (2019) 045002 [arXiv:1903.10563] [INSPIRE].

A. Aurisano et al., A Convolutional Neural Network Neutrino Event Classifier, 2016 JINST 11 P09001 [arXiv:1604.01444] [INSPIRE].

MicroBooNE collaboration, Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber, 2017 JINST 12 P03011 [arXiv:1611.05531] [INSPIRE].

MicroBooNE collaboration, Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber, Phys. Rev. D 99 (2019) 092001 [arXiv:1808.07269] [INSPIRE].

N. Choma et al., Graph Neural Networks for IceCube Signal Classification, in proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, U.S.A., 17–20 December 2018, pp. 386–391 [arXiv:1809.06166] [INSPIRE].

E. Racah et al., Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks, in proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, U.S.A., 18–20 December 2016, pp. 892–897 [arXiv:1601.07621] [INSPIRE].

EXO collaboration, Deep Neural Networks for Energy and Position Reconstruction in EXO-200, 2018 JINST 13 P08023 [arXiv:1804.09641] [INSPIRE].

H. Qiao, C. Lu, X. Chen, K. Han, X. Ji and S. Wang, Signal-background discrimination with convolutional neural networks in the PandaX-III experiment using MC simulation, Sci. China Phys. Mech. Astron. 61 (2018) 101007 [arXiv:1802.03489] [INSPIRE].

P. Ai, D. Wang, G. Huang and X. Sun, Three-dimensional convolutional neural networks for neutrinoless double-beta decay signal/background discrimination in high-pressure gaseous Time Projection Chamber, 2018 JINST 13 P08015 [arXiv:1803.01482] [INSPIRE].

NEXT collaboration, Background rejection in NEXT using deep neural networks, 2017 JINST 12 T01004 [arXiv:1609.06202] [INSPIRE].

NEXT collaboration, Sensitivity of NEXT-100 to Neutrinoless Double Beta Decay, JHEP 05 (2016) 159 [arXiv:1511.09246] [INSPIRE].

D. Nygren, High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search, Nucl. Instrum. Meth. A 603 (2009) 337 [INSPIRE].

NEXT collaboration, Calibration of the NEXT-White detector using 83mKr decays, 2018 JINST 13 P10014 [arXiv:1804.01780] [INSPIRE].

J. Martín-Albo, The NEXT experiment for neutrinoless double beta decay searches, Ph.D. Thesis, University of Valencia, Valencia Spain (2015) [INSPIRE].

GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

A. Krizhevsky, I. Sutskever and G.E. Hinton, Imagenet classification with deep convolutional neural networks, Commun. ACM 60 (2017) 84.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (2014) 1929.

S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv:1502.03167 [INSPIRE].

C. Guo, G. Pleiss, Y. Sun and K.Q. Weinberger, On calibration of modern neural networks, arXiv:1706.04599.

K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recognition, arXiv:1512.03385 [INSPIRE].

K. He, X. Zhang, S. Ren and J. Sun, Identity mappings in deep residual networks, arXiv:1603.05027.

X. Li, S. Chen, X. Hu and J. Yang, Understanding the Disharmony Between Dropout and Batch Normalization by Variance Shift, in proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, U.S.A., 15–20 June 2019, pp. 2677–2685.

J. Deng, W. Dong, R. Socher, L. Li, K. Li and L. Fei-Fei, ImageNet: A large-scale hierarchical image database, in proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, U.S.A., 20–25 June 2009, pp. 248–255.

B. Graham and L. van der Maaten, Submanifold sparse convolutional networks, arXiv:1706.01307.

L. Dominé and K. Terao, Scalable deep convolutional neural networks for sparse, locally dense liquid argon time projection chamber data, Phys. Rev. D 102 (2020) 012005 [arXiv:1903.05663] [INSPIRE].

C. Shorten and T.M. Khoshgoftaar, A survey on image data augmentation for deep learning, J. Big Data 6 (2019) 60.

G.J. Székely and M.L. Rizzo, Testing for equal distributions in high dimension, InterStat 5 (2004) 1.

G. Székely and M.L. Rizzo, Energy statistics: A class of statistics based on distances, J. Stat. Plann. Infer. 8 (2013) 1249.

R.A. Fisher, The Design of Experiments, Oliver and Boyd (1935).

NEXT collaboration, Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches, arXiv:2005.06467 [INSPIRE].

NEXT collaboration, Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment, 2013 JINST 8 P04002 [arXiv:1211.4838] [INSPIRE].

NEXT collaboration, Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST 8 P09011 [arXiv:1306.0471] [INSPIRE].

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem