- -

Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kekic, M. es_ES
dc.contributor.author Adams, C. es_ES
dc.contributor.author Woodruff, K. es_ES
dc.contributor.author Renner, J. es_ES
dc.contributor.author Church, E. es_ES
dc.contributor.author Del Tutto, M. es_ES
dc.contributor.author Hernando Morata, J. A. es_ES
dc.contributor.author Gomez-Cadenas, J. J. es_ES
dc.contributor.author Álvarez-Puerta, Vicente es_ES
dc.contributor.author Arazi, L. es_ES
dc.contributor.author Arnquist, I.J. es_ES
dc.contributor.author Azevedo, C. D. R. es_ES
dc.contributor.author Bailey, K. es_ES
dc.contributor.author Ballester Merelo, Francisco José es_ES
dc.contributor.author Benlloch-Rodriguez, J. M. es_ES
dc.contributor.author Esteve Bosch, Raul es_ES
dc.contributor.author Herrero Bosch, Vicente es_ES
dc.contributor.author Mora Mas, Francisco José es_ES
dc.contributor.author Rodriguez-Samaniego, Javier es_ES
dc.contributor.author Toledo Alarcón, José Francisco es_ES
dc.date.accessioned 2022-01-18T19:02:01Z
dc.date.available 2022-01-18T19:02:01Z
dc.date.issued 2021-01-28 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179911
dc.description.abstract [EN] Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in Xe-136. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a Th-228 calibration source. We train a network on Monte Carlo-simulated events and show that, by applying on-the-fly data augmentation, the network can be made robust against differences between simulation and data. The use of CNNs offers significant improvement in signal efficiency and background rejection when compared to previous non-CNN-based analyses es_ES
dc.description.sponsorship This study used computing resources from Artemisa, co-funded by the European Union through the 2014-2020 FEDER Operative Programme of the Comunitat Valenciana, project DIFEDER/2018/048. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. The NEXT collaboration acknowledges support from the following agencies and institutions: Xunta de Galicia (Centro singularde investigacion de Galicia accreditation 2019-2022), by European Union ERDF, and by the "Maria de Maeztu" Units of Excellence program MDM-2016-0692 and the Spanish Research State Agency"; the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad and the Ministerio de Ciencia, Innovacion y Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program grants SEV-20140398 and CEX2018-000867-S; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014 and under projects UID/FIS/04559/2020 to fund the activities of LIBPhys-UC; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0019223/DE SC0019054 (University of Texas at Arlington); and the University of Texas at Arlington. DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC-2015 18820. JMA acknowledges support from Fundacion Bancaria "la Caixa" (ID 100010434), grant code LCF/BQ/PI19/11690012. We also warmly acknowledge the Laboratori Nazionali del Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coating of various parts of the NEXT-White TPC. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of High Energy Physics (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Dark Matter and Double Beta Decay (experiments) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/JHEP01(2021)189 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095979-B-C44/ES/CONSTRUCCION Y OPERACION DEL DETECTOR NEXT-100/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FG02-13ER42020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/339787/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F048/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/674896/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//UID%2FFIS%2F04559%2F2020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/690575/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/740055/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-1-R/ES/CONSTRUCCION OPERACION E I+D+I PARA EL EXPERIMENTO NEXT EN EL LSC./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-SC0019223/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-4-R/ES/CONSTRUCCION, VALIDACION Y OPERACION DE LA ELECTRONICA DEL EXPERIMENTO NEXT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-SC0019054/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//MDM-2016-0692//Programa Maria de Maetzu/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//SEJI%2F2017%2F011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-18820//RYC-2015-18820/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//100010434/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CEX2018-000867-S/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FPI19%2F11690012/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Kekic, M.; Adams, C.; Woodruff, K.; Renner, J.; Church, E.; Del Tutto, M.; Hernando Morata, JA.... (2021). Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment. Journal of High Energy Physics (Online). (1):1-22. https://doi.org/10.1007/JHEP01(2021)189 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/JHEP01(2021)189 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1029-8479 es_ES
dc.relation.pasarela S\429008 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA Y EMPRESA es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.description.references NEXT collaboration, The Next White (NEW) Detector, 2018 JINST 13 P12010 [arXiv:1804.02409] [INSPIRE]. es_ES
dc.description.references NEXT collaboration, Energy calibration of the NEXT-White detector with 1% resolution near Qββ of 136Xe, JHEP 10 (2019) 230 [arXiv:1905.13110] [INSPIRE]. es_ES
dc.description.references NEXT collaboration, Demonstration of the event identification capabilities of the NEXT-White detector, JHEP 10 (2019) 052 [arXiv:1905.13141] [INSPIRE]. es_ES
dc.description.references NEXT collaboration, Radiogenic Backgrounds in the NEXT Double Beta Decay Experiment, JHEP 10 (2019) 051 [arXiv:1905.13625] [INSPIRE]. es_ES
dc.description.references G. Carleo et al., Machine learning and the physical sciences, Rev. Mod. Phys. 91 (2019) 045002 [arXiv:1903.10563] [INSPIRE]. es_ES
dc.description.references A. Aurisano et al., A Convolutional Neural Network Neutrino Event Classifier, 2016 JINST 11 P09001 [arXiv:1604.01444] [INSPIRE]. es_ES
dc.description.references MicroBooNE collaboration, Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber, 2017 JINST 12 P03011 [arXiv:1611.05531] [INSPIRE]. es_ES
dc.description.references MicroBooNE collaboration, Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber, Phys. Rev. D 99 (2019) 092001 [arXiv:1808.07269] [INSPIRE]. es_ES
dc.description.references N. Choma et al., Graph Neural Networks for IceCube Signal Classification, in proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, U.S.A., 17–20 December 2018, pp. 386–391 [arXiv:1809.06166] [INSPIRE]. es_ES
dc.description.references E. Racah et al., Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks, in proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, U.S.A., 18–20 December 2016, pp. 892–897 [arXiv:1601.07621] [INSPIRE]. es_ES
dc.description.references EXO collaboration, Deep Neural Networks for Energy and Position Reconstruction in EXO-200, 2018 JINST 13 P08023 [arXiv:1804.09641] [INSPIRE]. es_ES
dc.description.references H. Qiao, C. Lu, X. Chen, K. Han, X. Ji and S. Wang, Signal-background discrimination with convolutional neural networks in the PandaX-III experiment using MC simulation, Sci. China Phys. Mech. Astron. 61 (2018) 101007 [arXiv:1802.03489] [INSPIRE]. es_ES
dc.description.references P. Ai, D. Wang, G. Huang and X. Sun, Three-dimensional convolutional neural networks for neutrinoless double-beta decay signal/background discrimination in high-pressure gaseous Time Projection Chamber, 2018 JINST 13 P08015 [arXiv:1803.01482] [INSPIRE]. es_ES
dc.description.references NEXT collaboration, Background rejection in NEXT using deep neural networks, 2017 JINST 12 T01004 [arXiv:1609.06202] [INSPIRE]. es_ES
dc.description.references NEXT collaboration, Sensitivity of NEXT-100 to Neutrinoless Double Beta Decay, JHEP 05 (2016) 159 [arXiv:1511.09246] [INSPIRE]. es_ES
dc.description.references D. Nygren, High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search, Nucl. Instrum. Meth. A 603 (2009) 337 [INSPIRE]. es_ES
dc.description.references NEXT collaboration, Calibration of the NEXT-White detector using 83mKr decays, 2018 JINST 13 P10014 [arXiv:1804.01780] [INSPIRE]. es_ES
dc.description.references J. Martín-Albo, The NEXT experiment for neutrinoless double beta decay searches, Ph.D. Thesis, University of Valencia, Valencia Spain (2015) [INSPIRE]. es_ES
dc.description.references GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. es_ES
dc.description.references A. Krizhevsky, I. Sutskever and G.E. Hinton, Imagenet classification with deep convolutional neural networks, Commun. ACM 60 (2017) 84. es_ES
dc.description.references N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (2014) 1929. es_ES
dc.description.references S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv:1502.03167 [INSPIRE]. es_ES
dc.description.references C. Guo, G. Pleiss, Y. Sun and K.Q. Weinberger, On calibration of modern neural networks, arXiv:1706.04599. es_ES
dc.description.references K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recognition, arXiv:1512.03385 [INSPIRE]. es_ES
dc.description.references K. He, X. Zhang, S. Ren and J. Sun, Identity mappings in deep residual networks, arXiv:1603.05027. es_ES
dc.description.references X. Li, S. Chen, X. Hu and J. Yang, Understanding the Disharmony Between Dropout and Batch Normalization by Variance Shift, in proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, U.S.A., 15–20 June 2019, pp. 2677–2685. es_ES
dc.description.references J. Deng, W. Dong, R. Socher, L. Li, K. Li and L. Fei-Fei, ImageNet: A large-scale hierarchical image database, in proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, U.S.A., 20–25 June 2009, pp. 248–255. es_ES
dc.description.references B. Graham and L. van der Maaten, Submanifold sparse convolutional networks, arXiv:1706.01307. es_ES
dc.description.references L. Dominé and K. Terao, Scalable deep convolutional neural networks for sparse, locally dense liquid argon time projection chamber data, Phys. Rev. D 102 (2020) 012005 [arXiv:1903.05663] [INSPIRE]. es_ES
dc.description.references C. Shorten and T.M. Khoshgoftaar, A survey on image data augmentation for deep learning, J. Big Data 6 (2019) 60. es_ES
dc.description.references G.J. Székely and M.L. Rizzo, Testing for equal distributions in high dimension, InterStat 5 (2004) 1. es_ES
dc.description.references G. Székely and M.L. Rizzo, Energy statistics: A class of statistics based on distances, J. Stat. Plann. Infer. 8 (2013) 1249. es_ES
dc.description.references R.A. Fisher, The Design of Experiments, Oliver and Boyd (1935). es_ES
dc.description.references NEXT collaboration, Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches, arXiv:2005.06467 [INSPIRE]. es_ES
dc.description.references NEXT collaboration, Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment, 2013 JINST 8 P04002 [arXiv:1211.4838] [INSPIRE]. es_ES
dc.description.references NEXT collaboration, Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST 8 P09011 [arXiv:1306.0471] [INSPIRE]. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem