dc.contributor.author |
Kekic, M.
|
es_ES |
dc.contributor.author |
Adams, C.
|
es_ES |
dc.contributor.author |
Woodruff, K.
|
es_ES |
dc.contributor.author |
Renner, J.
|
es_ES |
dc.contributor.author |
Church, E.
|
es_ES |
dc.contributor.author |
Del Tutto, M.
|
es_ES |
dc.contributor.author |
Hernando Morata, J. A.
|
es_ES |
dc.contributor.author |
Gomez-Cadenas, J. J.
|
es_ES |
dc.contributor.author |
Álvarez-Puerta, Vicente
|
es_ES |
dc.contributor.author |
Arazi, L.
|
es_ES |
dc.contributor.author |
Arnquist, I.J.
|
es_ES |
dc.contributor.author |
Azevedo, C. D. R.
|
es_ES |
dc.contributor.author |
Bailey, K.
|
es_ES |
dc.contributor.author |
Ballester Merelo, Francisco José
|
es_ES |
dc.contributor.author |
Benlloch-Rodriguez, J. M.
|
es_ES |
dc.contributor.author |
Esteve Bosch, Raul
|
es_ES |
dc.contributor.author |
Herrero Bosch, Vicente
|
es_ES |
dc.contributor.author |
Mora Mas, Francisco José
|
es_ES |
dc.contributor.author |
Rodriguez-Samaniego, Javier
|
es_ES |
dc.contributor.author |
Toledo Alarcón, José Francisco
|
es_ES |
dc.date.accessioned |
2022-01-18T19:02:01Z |
|
dc.date.available |
2022-01-18T19:02:01Z |
|
dc.date.issued |
2021-01-28 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/179911 |
|
dc.description.abstract |
[EN] Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in Xe-136. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a Th-228 calibration source. We train a network on Monte Carlo-simulated events and show that, by applying on-the-fly data augmentation, the network can be made robust against differences between simulation and data. The use of CNNs offers significant improvement in signal efficiency and background rejection when compared to previous non-CNN-based analyses |
es_ES |
dc.description.sponsorship |
This study used computing resources from Artemisa, co-funded by the European Union through the 2014-2020 FEDER Operative Programme of the Comunitat Valenciana, project DIFEDER/2018/048. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. The NEXT collaboration acknowledges support from the following agencies and institutions: Xunta de Galicia (Centro singularde investigacion de Galicia accreditation 2019-2022), by European Union ERDF, and by the "Maria de Maeztu" Units of Excellence program MDM-2016-0692 and the Spanish Research State Agency"; the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad and the Ministerio de Ciencia, Innovacion y Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program grants SEV-20140398 and CEX2018-000867-S; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014 and under projects UID/FIS/04559/2020 to fund the activities of LIBPhys-UC; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0019223/DE SC0019054 (University of Texas at Arlington); and the University of Texas at Arlington. DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC-2015 18820. JMA acknowledges support from Fundacion Bancaria "la Caixa" (ID 100010434), grant code LCF/BQ/PI19/11690012. We also warmly acknowledge the Laboratori Nazionali del Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coating of various parts of the NEXT-White TPC. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer-Verlag |
es_ES |
dc.relation.ispartof |
Journal of High Energy Physics (Online) |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.subject |
Dark Matter and Double Beta Decay (experiments) |
es_ES |
dc.subject.classification |
TECNOLOGIA ELECTRONICA |
es_ES |
dc.title |
Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/JHEP01(2021)189 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095979-B-C44/ES/CONSTRUCCION Y OPERACION DEL DETECTOR NEXT-100/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/DOE//DE-FG02-13ER42020/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/EC/FP7/339787/EU/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F048/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/EC/H2020/674896/EU/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/FCT//UID%2FFIS%2F04559%2F2020/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/EC/H2020/690575/EU/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/EC/H2020/740055/EU/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-1-R/ES/CONSTRUCCION OPERACION E I+D+I PARA EL EXPERIMENTO NEXT EN EL LSC./ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/DOE//DE-SC0019223/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-4-R/ES/CONSTRUCCION, VALIDACION Y OPERACION DE LA ELECTRONICA DEL EXPERIMENTO NEXT/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/DOE//DE-SC0019054/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MCIU//MDM-2016-0692//Programa Maria de Maetzu/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//SEJI%2F2017%2F011/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//RYC-2015-18820//RYC-2015-18820/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//100010434/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//CEX2018-000867-S/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FPI19%2F11690012/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica |
es_ES |
dc.description.bibliographicCitation |
Kekic, M.; Adams, C.; Woodruff, K.; Renner, J.; Church, E.; Del Tutto, M.; Hernando Morata, JA.... (2021). Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment. Journal of High Energy Physics (Online). (1):1-22. https://doi.org/10.1007/JHEP01(2021)189 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1007/JHEP01(2021)189 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
22 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.issue |
1 |
es_ES |
dc.identifier.eissn |
1029-8479 |
es_ES |
dc.relation.pasarela |
S\429008 |
es_ES |
dc.contributor.funder |
European Commission |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
U.S. Department of Energy |
es_ES |
dc.contributor.funder |
AGENCIA ESTATAL DE INVESTIGACION |
es_ES |
dc.contributor.funder |
MINISTERIO DE ECONOMIA Y EMPRESA |
es_ES |
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.contributor.funder |
Ministerio de Ciencia, Innovación y Universidades |
es_ES |
dc.contributor.funder |
Fundação para a Ciência e a Tecnologia, Portugal |
es_ES |
dc.contributor.funder |
Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona |
es_ES |
dc.description.references |
NEXT collaboration, The Next White (NEW) Detector, 2018 JINST 13 P12010 [arXiv:1804.02409] [INSPIRE]. |
es_ES |
dc.description.references |
NEXT collaboration, Energy calibration of the NEXT-White detector with 1% resolution near Qββ of 136Xe, JHEP 10 (2019) 230 [arXiv:1905.13110] [INSPIRE]. |
es_ES |
dc.description.references |
NEXT collaboration, Demonstration of the event identification capabilities of the NEXT-White detector, JHEP 10 (2019) 052 [arXiv:1905.13141] [INSPIRE]. |
es_ES |
dc.description.references |
NEXT collaboration, Radiogenic Backgrounds in the NEXT Double Beta Decay Experiment, JHEP 10 (2019) 051 [arXiv:1905.13625] [INSPIRE]. |
es_ES |
dc.description.references |
G. Carleo et al., Machine learning and the physical sciences, Rev. Mod. Phys. 91 (2019) 045002 [arXiv:1903.10563] [INSPIRE]. |
es_ES |
dc.description.references |
A. Aurisano et al., A Convolutional Neural Network Neutrino Event Classifier, 2016 JINST 11 P09001 [arXiv:1604.01444] [INSPIRE]. |
es_ES |
dc.description.references |
MicroBooNE collaboration, Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber, 2017 JINST 12 P03011 [arXiv:1611.05531] [INSPIRE]. |
es_ES |
dc.description.references |
MicroBooNE collaboration, Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber, Phys. Rev. D 99 (2019) 092001 [arXiv:1808.07269] [INSPIRE]. |
es_ES |
dc.description.references |
N. Choma et al., Graph Neural Networks for IceCube Signal Classification, in proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, U.S.A., 17–20 December 2018, pp. 386–391 [arXiv:1809.06166] [INSPIRE]. |
es_ES |
dc.description.references |
E. Racah et al., Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks, in proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, U.S.A., 18–20 December 2016, pp. 892–897 [arXiv:1601.07621] [INSPIRE]. |
es_ES |
dc.description.references |
EXO collaboration, Deep Neural Networks for Energy and Position Reconstruction in EXO-200, 2018 JINST 13 P08023 [arXiv:1804.09641] [INSPIRE]. |
es_ES |
dc.description.references |
H. Qiao, C. Lu, X. Chen, K. Han, X. Ji and S. Wang, Signal-background discrimination with convolutional neural networks in the PandaX-III experiment using MC simulation, Sci. China Phys. Mech. Astron. 61 (2018) 101007 [arXiv:1802.03489] [INSPIRE]. |
es_ES |
dc.description.references |
P. Ai, D. Wang, G. Huang and X. Sun, Three-dimensional convolutional neural networks for neutrinoless double-beta decay signal/background discrimination in high-pressure gaseous Time Projection Chamber, 2018 JINST 13 P08015 [arXiv:1803.01482] [INSPIRE]. |
es_ES |
dc.description.references |
NEXT collaboration, Background rejection in NEXT using deep neural networks, 2017 JINST 12 T01004 [arXiv:1609.06202] [INSPIRE]. |
es_ES |
dc.description.references |
NEXT collaboration, Sensitivity of NEXT-100 to Neutrinoless Double Beta Decay, JHEP 05 (2016) 159 [arXiv:1511.09246] [INSPIRE]. |
es_ES |
dc.description.references |
D. Nygren, High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search, Nucl. Instrum. Meth. A 603 (2009) 337 [INSPIRE]. |
es_ES |
dc.description.references |
NEXT collaboration, Calibration of the NEXT-White detector using 83mKr decays, 2018 JINST 13 P10014 [arXiv:1804.01780] [INSPIRE]. |
es_ES |
dc.description.references |
J. Martín-Albo, The NEXT experiment for neutrinoless double beta decay searches, Ph.D. Thesis, University of Valencia, Valencia Spain (2015) [INSPIRE]. |
es_ES |
dc.description.references |
GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. |
es_ES |
dc.description.references |
A. Krizhevsky, I. Sutskever and G.E. Hinton, Imagenet classification with deep convolutional neural networks, Commun. ACM 60 (2017) 84. |
es_ES |
dc.description.references |
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (2014) 1929. |
es_ES |
dc.description.references |
S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv:1502.03167 [INSPIRE]. |
es_ES |
dc.description.references |
C. Guo, G. Pleiss, Y. Sun and K.Q. Weinberger, On calibration of modern neural networks, arXiv:1706.04599. |
es_ES |
dc.description.references |
K. He, X. Zhang, S. Ren and J. Sun, Deep Residual Learning for Image Recognition, arXiv:1512.03385 [INSPIRE]. |
es_ES |
dc.description.references |
K. He, X. Zhang, S. Ren and J. Sun, Identity mappings in deep residual networks, arXiv:1603.05027. |
es_ES |
dc.description.references |
X. Li, S. Chen, X. Hu and J. Yang, Understanding the Disharmony Between Dropout and Batch Normalization by Variance Shift, in proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, U.S.A., 15–20 June 2019, pp. 2677–2685. |
es_ES |
dc.description.references |
J. Deng, W. Dong, R. Socher, L. Li, K. Li and L. Fei-Fei, ImageNet: A large-scale hierarchical image database, in proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, U.S.A., 20–25 June 2009, pp. 248–255. |
es_ES |
dc.description.references |
B. Graham and L. van der Maaten, Submanifold sparse convolutional networks, arXiv:1706.01307. |
es_ES |
dc.description.references |
L. Dominé and K. Terao, Scalable deep convolutional neural networks for sparse, locally dense liquid argon time projection chamber data, Phys. Rev. D 102 (2020) 012005 [arXiv:1903.05663] [INSPIRE]. |
es_ES |
dc.description.references |
C. Shorten and T.M. Khoshgoftaar, A survey on image data augmentation for deep learning, J. Big Data 6 (2019) 60. |
es_ES |
dc.description.references |
G.J. Székely and M.L. Rizzo, Testing for equal distributions in high dimension, InterStat 5 (2004) 1. |
es_ES |
dc.description.references |
G. Székely and M.L. Rizzo, Energy statistics: A class of statistics based on distances, J. Stat. Plann. Infer. 8 (2013) 1249. |
es_ES |
dc.description.references |
R.A. Fisher, The Design of Experiments, Oliver and Boyd (1935). |
es_ES |
dc.description.references |
NEXT collaboration, Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches, arXiv:2005.06467 [INSPIRE]. |
es_ES |
dc.description.references |
NEXT collaboration, Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment, 2013 JINST 8 P04002 [arXiv:1211.4838] [INSPIRE]. |
es_ES |
dc.description.references |
NEXT collaboration, Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST 8 P09011 [arXiv:1306.0471] [INSPIRE]. |
es_ES |