- -

A Cloud Architecture for the Execution of Medical Imaging Biomarkers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Cloud Architecture for the Execution of Medical Imaging Biomarkers

Show full item record

López-Huguet, S.; García-Castro, F.; Alberich-Bayarri, A.; Blanquer Espert, I. (2019). A Cloud Architecture for the Execution of Medical Imaging Biomarkers. Springer. 130-144. https://doi.org/10.1007/978-3-030-22744-9_10

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/179920

Files in this item

Item Metadata

Title: A Cloud Architecture for the Execution of Medical Imaging Biomarkers
Author: López-Huguet, Sergio García-Castro, Fabio Alberich-Bayarri, Angel Blanquer Espert, Ignacio
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Issued date:
Abstract:
Digital Medical Imaging is increasingly being used in clinical routine and research. As a consequence, the workload in medical imaging departments in hospitals has multiplied by over 20 in the last decade. Medical Image ...[+]
Subjects: Cloud computing , Medical imaging , DevOps
Copyrigths: Reserva de todos los derechos
ISBN: 978-3-030-22734-0
Source:
Computational Science - ICCS 2019. Lecture Notes in Computer Science. (issn: 0302-9743 )
DOI: 10.1007/978-3-030-22744-9_10
Publisher:
Springer
Publisher version: https://doi.org/10.1007/978-3-030-22744-9_10
Conference name: International Conference on Computational Science (ICCS 2019)
Conference place: Faro, Portugal
Conference date: Junio 12-14,2019
Series: Lecture Notes in Computer Science;11538
Project ID:
info:eu-repo/grantAgreement/EC/H2020/777154/EU/
info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R//COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/
info:eu-repo/grantAgreement/EC/H2020/778064/EU/
info:eu-repo/grantAgreement/MCTIC//51119/
Thanks:
The work in this article has been co-funded by project SME Instrument Phase II - 778064, QUIBIM Precision, funded by the European Commission under the INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies ...[+]
Type: Comunicación en congreso Artículo Capítulo de libro

References

Amazon EC2 web site. https://aws.amazon.com/es/ec2/. Accessed 29 Dec 2018

Apache Mesos web site. http://mesos.apache.org/. Accessed 29 Dec 2018

Chronos web site. https://mesos.github.io/chronos/. Accessed 29 Dec 2018 [+]
Amazon EC2 web site. https://aws.amazon.com/es/ec2/. Accessed 29 Dec 2018

Apache Mesos web site. http://mesos.apache.org/. Accessed 29 Dec 2018

Chronos web site. https://mesos.github.io/chronos/. Accessed 29 Dec 2018

Cloudbiolinux web site. http://cloudbiolinux.org/. Accessed 29 Dec 2018

Cloudman web site. https://galaxyproject.org/cloudman. Accessed 29 Dec 2018

Eucalyptus web site. https://www.eucalyptus.cloud/. Accessed 29 Dec 2018

Galaxy Platform web site. https://galaxyproject.org. Accessed 29 Dec 2018

Imagej web site. https://imagej.nih.gov/ij/. Accessed 29 Dec 2018

Kubernetes web site. https://kubernetes.io. Accessed 29 Dec 2018

Linux containers. https://linuxcontainers.org/. Accessed 29 Dec 2018

LXD documentation. https://lxd.readthedocs.io/. Accessed 29 Dec 2018

Marathon. https://mesosphere.github.io/marathon/. Accessed 29 Dec 2018

Nomad web site. https://www.nomadproject.io/. Accessed 29 Dec 2018

OpenFaas web site. https://www.openfaas.com/. Accessed 29 Dec 2018

OpenStack web site. https://www.openstack.org/. Accessed 29 Dec 2018

de Alfonso, C., Caballer, M., Calatrava, A., Moltó, G., Blanquer, I.: Multi-elastic Datacenters: auto-scaled virtual clusters on energy-aware physical infrastructures. J. Grid Comput. (2018). https://doi.org/10.1007/s10723-018-9449-z

Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. J. Grid Comput. 13(1), 53–70 (2015). https://doi.org/10.1007/s10723-014-9296-5

Calatrava, A., Romero, E., Moltó, G., Caballer, M., Alonso, J.M.: Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Future Gener. Comput. Syst. 61, 13–25 (2016). https://doi.org/10.1016/j.future.2016.01.018

De Alfonso, C., Caballer, M., Alvarruiz, F., Hernández, V.: An energy management system for cluster infrastructures. Comput. Electr. Eng. 39, 2579–2590 (2013). https://doi.org/10.1016/j.compeleceng.2013.05.004

Dutka, Ł., et al.: Onedata - a step forward towards globalization of data access for computing infrastructures. Procedia Comput. Sci. 51, 2843–2847 (2015). https://doi.org/10.1016/j.procs.2015.05.445. International Conference On Computational Science, ICCS 2015

European Society of Radiology (ESR): White paper on imaging biomarkers. Insights Imaging 1(2), 42–45 (2010). https://doi.org/10.1007/s13244-010-0025-8

Lee, H.: Using Bioinformatics Applications on the Cloud (2013). http://dsc.soic.indiana.edu/publications/bioinformatics.pdf. Accessed 29 Dec 2018

Docker Inc.: Docker. https://www.docker.com/. Accessed 29 Dec 2018

Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for mobility of compute. PLOS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/journal.pone.0177459

López-Huguet, S., et al.: A self-managed Mesos cluster for data analytics with QoS guarantees. Future Gener. Comput. Syst. 96, 449–461 (2019). https://doi.org/10.1016/j.future.2019.02.047

Martí-Bonmatí, L., García-Martí, G., Alberich-Bayarri, A., Sanz-Requena, R.: QUIBIM SL.: Método de segmentación por umbral adaptativo variable para la obtención de valores de referencia del aire corte a corte en estudios de imagen por tomografía computarizada, ES 2530424B1, 02 September 2013

Martí-Bonmatí, L., Alberich-Bayarri, A.: Imaging Biomarkers: Development and Clinical Integration. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43504-6

Marwan, M., Kartit, A., Ouahmane, H.: Using cloud solution for medical image processing: issues and implementation efforts. In: 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech). IEEE, October 2017. https://doi.org/10.1109/cloudtech.2017.8284703

Mayorga-Ruiz, I., García-Juan, D., Alberich-Bayarri, A., García-Castro, F., Martí-Bonmatí, L.: Fully automated method for lung emphysema quantification for Multidetector CT images. http://quibim.com/wp-content/uploads/2018/02/ECR_Fully-automated-quantification-of-lung-emphysema-using-CT-images.pdf. Accessed 22 Mar 2019

Mirarab, A., Fard, N.G., Shamsi, M.: A cloud solution for medical image processing. Int. J. Eng. Res. Appl. 4(7), 74–82 (2014)

Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for container-based architectures. Future Gener. Comput. Syst. 83, 50–59 (2018). https://doi.org/10.1016/j.future.2018.01.022

Shakil, K.A., Alam, M.: Cloud computing in bioinformatics and big data analytics: current status and future research. In: Aggarwal, V.B., Bhatnagar, V., Mishra, D.K. (eds.) Big Data Analytics. AISC, vol. 654, pp. 629–640. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6620-7_60

Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: a scalable, high-performance distributed file system. In: Proceedings of the 7th Symposium on Operating Systems Design and Implementation, OSDI 2006, pp. 307–320. USENIX Association, Berkeley (2006). http://dl.acm.org/citation.cfm?id=1298455.1298485

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record