Mostrar el registro sencillo del ítem
dc.contributor.author | López-Huguet, Sergio | es_ES |
dc.contributor.author | García-Castro, Fabio | es_ES |
dc.contributor.author | Alberich-Bayarri, Angel | es_ES |
dc.contributor.author | Blanquer Espert, Ignacio | es_ES |
dc.date.accessioned | 2022-01-19T09:17:22Z | |
dc.date.available | 2022-01-19T09:17:22Z | |
dc.date.issued | 2019-06-14 | es_ES |
dc.identifier.isbn | 978-3-030-22734-0 | es_ES |
dc.identifier.issn | 0302-9743 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/179920 | |
dc.description.abstract | Digital Medical Imaging is increasingly being used in clinical routine and research. As a consequence, the workload in medical imaging departments in hospitals has multiplied by over 20 in the last decade. Medical Image processing requires intensive computing resources not available at hospitals, but which could be provided by public clouds. The article analyses the requirements of processing digital medical images and introduces a cloud-based architecture centred on a DevOps approach to deploying resources on demand, adjusting them based on the request of resources and the expected execution time to deal with an unplanned workload. Results presented show a low overhead and high flexibility executing a lung disease biomarker on a public cloud. | es_ES |
dc.description.sponsorship | The work in this article has been co-funded by project SME Instrument Phase II - 778064, QUIBIM Precision, funded by the European Commission under the INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT), Horizon 2020, project ATMOSPHERE, funded jointly by the European Commission under the Cooperation Programme, Horizon 2020 grant agreement No 777154 and the Brazilian Ministerio de Ciencia, Tecnologia e Inovacao (MCTI), number 51119. The authors would like also to thank the Spanish Ministerio de Economia, Industria y Competitividad¿ for the project BigCLOE with reference number TIN2016-79951-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Computational Science - ICCS 2019. Lecture Notes in Computer Science | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science;11538 | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject | Medical imaging | es_ES |
dc.subject | DevOps | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | A Cloud Architecture for the Execution of Medical Imaging Biomarkers | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-22744-9_10 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/777154/EU/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R//COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/778064/EU/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCTIC//51119/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | López-Huguet, S.; García-Castro, F.; Alberich-Bayarri, A.; Blanquer Espert, I. (2019). A Cloud Architecture for the Execution of Medical Imaging Biomarkers. Springer. 130-144. https://doi.org/10.1007/978-3-030-22744-9_10 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | International Conference on Computational Science (ICCS 2019) | es_ES |
dc.relation.conferencedate | Junio 12-14,2019 | es_ES |
dc.relation.conferenceplace | Faro, Portugal | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-22744-9_10 | es_ES |
dc.description.upvformatpinicio | 130 | es_ES |
dc.description.upvformatpfin | 144 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\390043 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes, Brasil | es_ES |
dc.description.references | Amazon EC2 web site. https://aws.amazon.com/es/ec2/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Apache Mesos web site. http://mesos.apache.org/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Chronos web site. https://mesos.github.io/chronos/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Cloudbiolinux web site. http://cloudbiolinux.org/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Cloudman web site. https://galaxyproject.org/cloudman. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Eucalyptus web site. https://www.eucalyptus.cloud/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Galaxy Platform web site. https://galaxyproject.org. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Imagej web site. https://imagej.nih.gov/ij/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Kubernetes web site. https://kubernetes.io. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Linux containers. https://linuxcontainers.org/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | LXD documentation. https://lxd.readthedocs.io/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Marathon. https://mesosphere.github.io/marathon/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Nomad web site. https://www.nomadproject.io/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | OpenFaas web site. https://www.openfaas.com/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | OpenStack web site. https://www.openstack.org/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | de Alfonso, C., Caballer, M., Calatrava, A., Moltó, G., Blanquer, I.: Multi-elastic Datacenters: auto-scaled virtual clusters on energy-aware physical infrastructures. J. Grid Comput. (2018). https://doi.org/10.1007/s10723-018-9449-z | es_ES |
dc.description.references | Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. J. Grid Comput. 13(1), 53–70 (2015). https://doi.org/10.1007/s10723-014-9296-5 | es_ES |
dc.description.references | Calatrava, A., Romero, E., Moltó, G., Caballer, M., Alonso, J.M.: Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Future Gener. Comput. Syst. 61, 13–25 (2016). https://doi.org/10.1016/j.future.2016.01.018 | es_ES |
dc.description.references | De Alfonso, C., Caballer, M., Alvarruiz, F., Hernández, V.: An energy management system for cluster infrastructures. Comput. Electr. Eng. 39, 2579–2590 (2013). https://doi.org/10.1016/j.compeleceng.2013.05.004 | es_ES |
dc.description.references | Dutka, Ł., et al.: Onedata - a step forward towards globalization of data access for computing infrastructures. Procedia Comput. Sci. 51, 2843–2847 (2015). https://doi.org/10.1016/j.procs.2015.05.445. International Conference On Computational Science, ICCS 2015 | es_ES |
dc.description.references | European Society of Radiology (ESR): White paper on imaging biomarkers. Insights Imaging 1(2), 42–45 (2010). https://doi.org/10.1007/s13244-010-0025-8 | es_ES |
dc.description.references | Lee, H.: Using Bioinformatics Applications on the Cloud (2013). http://dsc.soic.indiana.edu/publications/bioinformatics.pdf. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Docker Inc.: Docker. https://www.docker.com/. Accessed 29 Dec 2018 | es_ES |
dc.description.references | Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for mobility of compute. PLOS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/journal.pone.0177459 | es_ES |
dc.description.references | López-Huguet, S., et al.: A self-managed Mesos cluster for data analytics with QoS guarantees. Future Gener. Comput. Syst. 96, 449–461 (2019). https://doi.org/10.1016/j.future.2019.02.047 | es_ES |
dc.description.references | Martí-Bonmatí, L., García-Martí, G., Alberich-Bayarri, A., Sanz-Requena, R.: QUIBIM SL.: Método de segmentación por umbral adaptativo variable para la obtención de valores de referencia del aire corte a corte en estudios de imagen por tomografía computarizada, ES 2530424B1, 02 September 2013 | es_ES |
dc.description.references | Martí-Bonmatí, L., Alberich-Bayarri, A.: Imaging Biomarkers: Development and Clinical Integration. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43504-6 | es_ES |
dc.description.references | Marwan, M., Kartit, A., Ouahmane, H.: Using cloud solution for medical image processing: issues and implementation efforts. In: 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech). IEEE, October 2017. https://doi.org/10.1109/cloudtech.2017.8284703 | es_ES |
dc.description.references | Mayorga-Ruiz, I., García-Juan, D., Alberich-Bayarri, A., García-Castro, F., Martí-Bonmatí, L.: Fully automated method for lung emphysema quantification for Multidetector CT images. http://quibim.com/wp-content/uploads/2018/02/ECR_Fully-automated-quantification-of-lung-emphysema-using-CT-images.pdf. Accessed 22 Mar 2019 | es_ES |
dc.description.references | Mirarab, A., Fard, N.G., Shamsi, M.: A cloud solution for medical image processing. Int. J. Eng. Res. Appl. 4(7), 74–82 (2014) | es_ES |
dc.description.references | Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for container-based architectures. Future Gener. Comput. Syst. 83, 50–59 (2018). https://doi.org/10.1016/j.future.2018.01.022 | es_ES |
dc.description.references | Shakil, K.A., Alam, M.: Cloud computing in bioinformatics and big data analytics: current status and future research. In: Aggarwal, V.B., Bhatnagar, V., Mishra, D.K. (eds.) Big Data Analytics. AISC, vol. 654, pp. 629–640. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6620-7_60 | es_ES |
dc.description.references | Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: a scalable, high-performance distributed file system. In: Proceedings of the 7th Symposium on Operating Systems Design and Implementation, OSDI 2006, pp. 307–320. USENIX Association, Berkeley (2006). http://dl.acm.org/citation.cfm?id=1298455.1298485 | es_ES |