- -

A Cloud Architecture for the Execution of Medical Imaging Biomarkers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Cloud Architecture for the Execution of Medical Imaging Biomarkers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López-Huguet, Sergio es_ES
dc.contributor.author García-Castro, Fabio es_ES
dc.contributor.author Alberich-Bayarri, Angel es_ES
dc.contributor.author Blanquer Espert, Ignacio es_ES
dc.date.accessioned 2022-01-19T09:17:22Z
dc.date.available 2022-01-19T09:17:22Z
dc.date.issued 2019-06-14 es_ES
dc.identifier.isbn 978-3-030-22734-0 es_ES
dc.identifier.issn 0302-9743 es_ES
dc.identifier.uri http://hdl.handle.net/10251/179920
dc.description.abstract Digital Medical Imaging is increasingly being used in clinical routine and research. As a consequence, the workload in medical imaging departments in hospitals has multiplied by over 20 in the last decade. Medical Image processing requires intensive computing resources not available at hospitals, but which could be provided by public clouds. The article analyses the requirements of processing digital medical images and introduces a cloud-based architecture centred on a DevOps approach to deploying resources on demand, adjusting them based on the request of resources and the expected execution time to deal with an unplanned workload. Results presented show a low overhead and high flexibility executing a lung disease biomarker on a public cloud. es_ES
dc.description.sponsorship The work in this article has been co-funded by project SME Instrument Phase II - 778064, QUIBIM Precision, funded by the European Commission under the INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT), Horizon 2020, project ATMOSPHERE, funded jointly by the European Commission under the Cooperation Programme, Horizon 2020 grant agreement No 777154 and the Brazilian Ministerio de Ciencia, Tecnologia e Inovacao (MCTI), number 51119. The authors would like also to thank the Spanish Ministerio de Economia, Industria y Competitividad¿ for the project BigCLOE with reference number TIN2016-79951-R. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Computational Science - ICCS 2019. Lecture Notes in Computer Science es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science;11538 es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cloud computing es_ES
dc.subject Medical imaging es_ES
dc.subject DevOps es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title A Cloud Architecture for the Execution of Medical Imaging Biomarkers es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-030-22744-9_10 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/777154/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R//COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/778064/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCTIC//51119/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation López-Huguet, S.; García-Castro, F.; Alberich-Bayarri, A.; Blanquer Espert, I. (2019). A Cloud Architecture for the Execution of Medical Imaging Biomarkers. Springer. 130-144. https://doi.org/10.1007/978-3-030-22744-9_10 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename International Conference on Computational Science (ICCS 2019) es_ES
dc.relation.conferencedate Junio 12-14,2019 es_ES
dc.relation.conferenceplace Faro, Portugal es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-22744-9_10 es_ES
dc.description.upvformatpinicio 130 es_ES
dc.description.upvformatpfin 144 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\390043 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes, Brasil es_ES
dc.description.references Amazon EC2 web site. https://aws.amazon.com/es/ec2/. Accessed 29 Dec 2018 es_ES
dc.description.references Apache Mesos web site. http://mesos.apache.org/. Accessed 29 Dec 2018 es_ES
dc.description.references Chronos web site. https://mesos.github.io/chronos/. Accessed 29 Dec 2018 es_ES
dc.description.references Cloudbiolinux web site. http://cloudbiolinux.org/. Accessed 29 Dec 2018 es_ES
dc.description.references Cloudman web site. https://galaxyproject.org/cloudman. Accessed 29 Dec 2018 es_ES
dc.description.references Eucalyptus web site. https://www.eucalyptus.cloud/. Accessed 29 Dec 2018 es_ES
dc.description.references Galaxy Platform web site. https://galaxyproject.org. Accessed 29 Dec 2018 es_ES
dc.description.references Imagej web site. https://imagej.nih.gov/ij/. Accessed 29 Dec 2018 es_ES
dc.description.references Kubernetes web site. https://kubernetes.io. Accessed 29 Dec 2018 es_ES
dc.description.references Linux containers. https://linuxcontainers.org/. Accessed 29 Dec 2018 es_ES
dc.description.references LXD documentation. https://lxd.readthedocs.io/. Accessed 29 Dec 2018 es_ES
dc.description.references Marathon. https://mesosphere.github.io/marathon/. Accessed 29 Dec 2018 es_ES
dc.description.references Nomad web site. https://www.nomadproject.io/. Accessed 29 Dec 2018 es_ES
dc.description.references OpenFaas web site. https://www.openfaas.com/. Accessed 29 Dec 2018 es_ES
dc.description.references OpenStack web site. https://www.openstack.org/. Accessed 29 Dec 2018 es_ES
dc.description.references de Alfonso, C., Caballer, M., Calatrava, A., Moltó, G., Blanquer, I.: Multi-elastic Datacenters: auto-scaled virtual clusters on energy-aware physical infrastructures. J. Grid Comput. (2018). https://doi.org/10.1007/s10723-018-9449-z es_ES
dc.description.references Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. J. Grid Comput. 13(1), 53–70 (2015). https://doi.org/10.1007/s10723-014-9296-5 es_ES
dc.description.references Calatrava, A., Romero, E., Moltó, G., Caballer, M., Alonso, J.M.: Self-managed cost-efficient virtual elastic clusters on hybrid Cloud infrastructures. Future Gener. Comput. Syst. 61, 13–25 (2016). https://doi.org/10.1016/j.future.2016.01.018 es_ES
dc.description.references De Alfonso, C., Caballer, M., Alvarruiz, F., Hernández, V.: An energy management system for cluster infrastructures. Comput. Electr. Eng. 39, 2579–2590 (2013). https://doi.org/10.1016/j.compeleceng.2013.05.004 es_ES
dc.description.references Dutka, Ł., et al.: Onedata - a step forward towards globalization of data access for computing infrastructures. Procedia Comput. Sci. 51, 2843–2847 (2015). https://doi.org/10.1016/j.procs.2015.05.445. International Conference On Computational Science, ICCS 2015 es_ES
dc.description.references European Society of Radiology (ESR): White paper on imaging biomarkers. Insights Imaging 1(2), 42–45 (2010). https://doi.org/10.1007/s13244-010-0025-8 es_ES
dc.description.references Lee, H.: Using Bioinformatics Applications on the Cloud (2013). http://dsc.soic.indiana.edu/publications/bioinformatics.pdf. Accessed 29 Dec 2018 es_ES
dc.description.references Docker Inc.: Docker. https://www.docker.com/. Accessed 29 Dec 2018 es_ES
dc.description.references Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for mobility of compute. PLOS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/journal.pone.0177459 es_ES
dc.description.references López-Huguet, S., et al.: A self-managed Mesos cluster for data analytics with QoS guarantees. Future Gener. Comput. Syst. 96, 449–461 (2019). https://doi.org/10.1016/j.future.2019.02.047 es_ES
dc.description.references Martí-Bonmatí, L., García-Martí, G., Alberich-Bayarri, A., Sanz-Requena, R.: QUIBIM SL.: Método de segmentación por umbral adaptativo variable para la obtención de valores de referencia del aire corte a corte en estudios de imagen por tomografía computarizada, ES 2530424B1, 02 September 2013 es_ES
dc.description.references Martí-Bonmatí, L., Alberich-Bayarri, A.: Imaging Biomarkers: Development and Clinical Integration. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43504-6 es_ES
dc.description.references Marwan, M., Kartit, A., Ouahmane, H.: Using cloud solution for medical image processing: issues and implementation efforts. In: 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech). IEEE, October 2017. https://doi.org/10.1109/cloudtech.2017.8284703 es_ES
dc.description.references Mayorga-Ruiz, I., García-Juan, D., Alberich-Bayarri, A., García-Castro, F., Martí-Bonmatí, L.: Fully automated method for lung emphysema quantification for Multidetector CT images. http://quibim.com/wp-content/uploads/2018/02/ECR_Fully-automated-quantification-of-lung-emphysema-using-CT-images.pdf. Accessed 22 Mar 2019 es_ES
dc.description.references Mirarab, A., Fard, N.G., Shamsi, M.: A cloud solution for medical image processing. Int. J. Eng. Res. Appl. 4(7), 74–82 (2014) es_ES
dc.description.references Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Serverless computing for container-based architectures. Future Gener. Comput. Syst. 83, 50–59 (2018). https://doi.org/10.1016/j.future.2018.01.022 es_ES
dc.description.references Shakil, K.A., Alam, M.: Cloud computing in bioinformatics and big data analytics: current status and future research. In: Aggarwal, V.B., Bhatnagar, V., Mishra, D.K. (eds.) Big Data Analytics. AISC, vol. 654, pp. 629–640. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6620-7_60 es_ES
dc.description.references Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: a scalable, high-performance distributed file system. In: Proceedings of the 7th Symposium on Operating Systems Design and Implementation, OSDI 2006, pp. 307–320. USENIX Association, Berkeley (2006). http://dl.acm.org/citation.cfm?id=1298455.1298485 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem